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Recursive implementation of
factorable two-dimensional digital filters

By J. M. Costa, Bell Northern Research, Outawa, and A. N. Venetsanopoulos, University of Toronto.

A brief tutorial background on the design of two-dimensional digitat filters is presented. A technique for designing stable two-dimensional recursive
filters is summarized and an algorithm useful for controlling the cutoff frequencies is discussed. The problem of implementation of two-dimensional
infinite impulsec-response digital filters is then considered and an algorithm is proposed for filters which are factorable into bilinear second-order
sections with complex cocfficicnts. Computational errors duc to the finite wordlength of the filters are analyzed. These errors can be represented by a
set of error sequences additively contaminating the output of an ideal realization. The transfer functions relating these error sequences to simple
roundoff crrors are derived. The problems of data management when large matrices are stored in auxiliary storage are also discussed and a solution is
proposed.

Cet article contient un bref rappel sur la conception des filires numériques a deux dimensions. On trouvera un résumé d'une technique de fabrication
de filtres récurrents a deux dimensions stables et une discussion a propos d'un algorithme utile dans la maitrise des fréquences de coupures. L auteur
envisage ensuite le probleme de la mise en place de filtres numériques a réponse d'impulsion, infinis a deux dimensions et propose un algorithme pour
les filtres qu'il est possible de mettre en facteur en sections du deuxi¢me ordre bilinéaires affectées de cocfficients complexes. I analyse également
les erreurs de calculs dues a la longueur de mot finic des filtres. On peut représenter ces erreurs par un jeu de séquences d'erreurs contaminant de
fagon cumulative la sortie d’une réalisation idéale. On a dérivé les fonctions de transfert liant ces séquences d'erreur aux simples erreurs
d’arrondissement. L'article se termine par une discussion sur le probléme de la gestion des données quand des matrices importantes sont stockées
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dans des mémoires auxiliaires et par une proposition de solution a ce probleme.

Introduction

The digital filtering of two-dimensional signals offers the many

advantages characteristic of digital computers, such as flexibility and

- accuracy. Applications exist in the processing of images and geo-
. physical data.

Two-dimensional digital filter design techniques can be divided into
two groups, those for finite impulse response (FIR) filters and those
for infinite impulse response (IIR) filters. Comprehensive reviews of
these techniques have been presented by Mersereau and Dudgeon!
and Chakrabarti and Mitra®. Recursive realizations have the potential
of saving both computer time and memory.? It is well known that
high-order two-dimensional IIR filters can not be, in general, factored
into lower order filters and realized in parallel or cascade form to
reduce the cffect of computational noise.* Filtering algorithms for
two-dimensional recursive filters have been given by Shanks.* They
can be implemented using either the direct form or a state-variable
description of the filter. Other algorithms using direct forms and
continued fraction expansions have becn proposed by Mitra, Sagar,
and Pendergrass.®

This paper summarizes a design technique previously used for
two-dimensional lIR filters,” introduces an algorithm useful for con-
trolling the cutoff frequencies and considers the problem of imple-
mentation of two-dimensional IIR filters, which are factorable into
bilincar second-order sections with complex cocflicients.

The filter design and realization techniques described in this paper
have been applied by Harrison to the processing of geophysical data
for the point determinations of ore grade from a Canadian copper
mine ?

Design of IR filters

One of the difficulties for the design of IR filters in two-dimen-
sions is due to the fact that a polynomial in two variables P(z,,z,)
cannot in general be factored into first- or second-order polynomials.
This implies that many one-dimensional design techniques cannot be
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readily extended to two-dimensions and that a high-order two-dimen-
sional filter cannot in general be synthesized in parallel or cascade
form to reduce the effect of quantization noise. It is also difficult to
test the stability of two-dimensional IIR filters except in simple cases.
Stability is an important issue in the design of IIR filters.! If a filter is
unstable, any input, including computational noise, could cause the
output to grow without bound, obliterating the desired response.

A two-dimensional recursive filter can be described by a linear
difference equation. The general form is

M, N,
g(m,n) = 2 Ea“f(m—i+l,n—j+l) -
i=1j=1
M, N,
S > bugm-i+La-j+0), )
i=1j=1
i.j# 1 simultaneously

Here it is assumed either that all output values g(m—i+1, n—j+1)
have been computed previously or are equal to zero (boundary condi-
tions).

Equation (1) can be written in the form
M, N, M, N,
S, S bugm-i+ln=j+D) =§§ S ayfm=i+la=j+1) (2
i=1j=1 i=1j=1

where b,; = 1.

Equation (2) can be solved for g(m.n) [cf. (1)}, g(m—M,+1,n),
g(m,n—Np+1), or g(m—M,+1,n—Ny+1) and in each case the dif-
ference equation obtained corresponds to a two-dimensional recursive
filter recursing in the (+m, +n), (—=m, +n), (+m, —n), or (—m, —n)
directions, respectively.?

A useful representation of (2) is obtained by the two-dimensional
z-transform or double z-transform. This transform is defined as
follows:

X(zy.2y) & 2‘

Mme-% Re-x

x(m,n) z'z} 3

where x(m.n) is a two-dimensional sequence, z, and z, are delay
operators, and X(z,.2,) its two-dimensional z-transform. The domain
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of definition for X(z,.z,) is its region of convergence in the z,,z;
plane. The propertics of the two-dimensional z-transform are similar
to those of the z-transform in one-dimension.

If the sequence x(m, n) is of finite duration and is bounded. then (3)
has finite limits in all the summations and X(z,,z,) converges every-
where in the z,z, plane.

The two-dimensional z-transform of (2) can be shown! to be
A(z,,2,)F(zy.2;) = Bl(z,,2;)G(z,,25) )
or
G(zy,2;) = H(z,,2,)F(zy,25)

where F(z,,z,) and G(z,,2,) are the two-dimensional z-transforms of
the input and the output sequence of the filter, respectively, and
M, N,
ayzi'zy!
A(z,,25) p i=1j=1

B(z,z;) M N
3 S oz

i=1j=1

H(z;,2;) = 4)

is the transfer function of the filter. The frequency response of the
filter is obtained by evaluating (4) for z; = exp(—j2wf,T)) and z, =
exp(—j2wf,T,), where Ty and T, are the sample intervals in the m
and n directions, respectively.

Frequency domain design techniques for two-dimensional 1IR
filters can be divided into optimum design techniques and ad hoc
design techniques.

Optimum filters may be more efficient in terms of the realization
but the computation time of the design can become prohibitively
large.

The ad hoc design techniques proposed so far consist of cascading
elementary one- and two-dimensional filters. A class of elementary
filters can be obtained with a design method due to Shanks, ' which
maps one-dimensional into two-dimensional filters with arbitrary
directivity in the two-dimensional frequency response plane. These
filters are called rotated filters, because they are obtained by rotating
one-dimensional filters in the two-dimensional frequency response
plane. Indeed, given the transfer function of an analogue filter H(s)
(e.g. Butterworth, Gaussian, etc.) the application of the transforma-
tion

s = —s,8in@ + s,cos8

results‘in a transfer function whose frequency response is the original
one but rotated by the angle 8. The corresponding two-dimensional
recursive filter is obtained by applying the bilincar transformation to
each variable s, and s,. This transformation distorts the frequency
response cspecially at frequencies close to the Nyquist frequency,
consequently the magnitude response has the shape of a ridge. The
angle of rotation @ is defined as that extended by the direction of the
crest (cf. Ref. 7, Fig. 2). The cutoff frequency of a rotated filter is
then usuatly measured in a direction 8 + 90°, namely on a cross-cut
perpendicular to the crest and passing through the origin.

Rotated filters are stable if the angle of rotation 8 lies between 270°
and 370°. In certain applications a slight perturbation of the
coefficients may be necessary to ensure stability for all inputs. as
indicated in Ref. 7. A rigorous discussion of the stability of rotated
filters has been presented by Goodman.'® Avpendix To implement
filters with angles of rotation outside the range 270° < 8 < 360° a data
transformation technique was proposed.” ' ™ Its essence ‘consists in
transforming both the data and the transfer function of the filter 10
guarantce stability. The transformations of the data do not affect the
filter stability and the output can be inverse transformed, so that the
overall transfer function is the desired one. Indeed, it is casily shown
that the system

Y(w, . ws) = [TH(w,w)| - X(w;,w;)

is equivalent to the system
Y(w,.wy) = T{H(w,wy) « [T X(w;,w,)]}

where X(w,,w,) and Y(w,,w,) are the Fourier transforms of the input
and output of the system, respectively, and the transform function of
the system is H(w,,w,) affected by the transformation T.'®

There are cight possible transformations, as shown in Ref. 13.
Figure 1 (cf. Fig. 2 in Ref. 13) shows the dircction of recursion, sense
of recursion, and the starting point of the input data for cach of the
transformed filters. A horizontal arrow denotes a recursion by rows
and a vertical arrow denotes a recursion by columns. The head of the
arrow points in the sense of recursion and the base of the arrow shows
the starting point. Figure 1 will prove to be crucial in understanding
the filter implementation technique presented under **Realization of
two-dimensional 1R filters in a general purpose digital computer’”.
An alternative to these transformations is to filter the data in a
different manner, by using an algorithm recursing in another dircc-
(ionhll.IS.lG
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Figure 1 (a)-(h): Realization of a transformed filter by changing the direction and
sense of recursion of the filter algorithm.

Hence, stable rotated filters can be obtained for any effective angle
of rotation. In a previous paper we used this method to design good
approximations to circularly-symmetric filters by cascading rotated
filters.” To approximate the circular symmetry the angles of rotation
are chosen uniformly distributed over 180° (or 360° if zero-phase
response is required). An extension to the design method in Ref. 7
which facilitates frequency response optimization via nonlinear pro-
gramming has recently been published by Goodman. 2 Tn the next
section we present an iterative technique for controlling the cutoff
frequencies of a cascade of rotated filters.

Control of the cutoff frequencies

Rotated filters are designed in the s-domain and the two-dimen-
sional bilinear z-transforms are used to obtain digital filters. Due to
the double periodicity of the frequency response of two-dimensional
digital fiters, the desired frequency response of rotated filters is
distorted to an extent which depends on the angle of rotation. We have
observed that in the low-frequency region the deviation from the
desired frequency response is maximum for a rotation of 315°. The
previously mentioned algorithm for designing circularly symmetric
filters” did not compensate for this cffect. The frequency response was
approximated iteratively in onc direction only and each rotated filter
in the cascade was designed with the same cutoff frequency.

We have developed' a new algorithm in which the frequency
response is approximated in as many directions as the number of
rotated filters being cascaded. The cutoff frequency of each rotated
filter is adjusted separately and iteratively according to the frequency
response obtained when all the filters in the cascade are considered.

The approach has not only the advantage of giving a better circu-
larly-symmetric  frequency  response  but also  non-circularly-
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symmetric filters can be designed, by specifying different cutoff fre-
quencics in cach direction. Since only low-pass filters are cascaded,
the tocus of the cutoff frequency of the two-dimensional tilter cannot
be arbitrary and consequently some constraints are imposed on the
rclationships among the cutoff frequencies. Band-pass and high-pass
filters can be obtained by combining low-pass and all-pass filters in
parallel.

Using this new algorithm problems of convergence may arise if too
much accuracy is specified in too many directions. Indeed, the
adjustment of the cutoff frequency of each rotated filter in the cascade
affects the frequency response over the whole plane, thus also
changing the cutoff frequencies in the other directions, in a manner
which may conflict with the desired specifications. The algorithm
takes care of this problem by stopping the iteration as soon as it ceases
to converge. An crror code is returned, which specifies if convergence
was attained. The source listing of a FORTRAN 1V Program which
implements this algorithm is given in Ref. 16.

The new algorithm featurces the following steps:
1. Initialization. Get the poles and zeros of a stable one-dimensional
continuous low-pass filter with cutoff frequency normalized to.

1/(2m), (i.e. cutoff angular frequency normalized to unity). Get the

Ko desired angles of rotation 270° < 6(k) < 360°, k = 1,...Ke and
the desired cutoff frequencies fu(k), k =1,. ..
sional digital filter in each direction 6(k) + 90°, k = 1,...,Ks. The
frequencies f,(k) are given as fractions of half the sampling fre-
quency. If the input arguments are inconsistent, return to the calling
program with an error code IERROR = 1. Otherwise let i = O for the
first iteration and continue.

2. Let fi(k) = fu(k), k=1,...,Ks.

3. For k = 1,..., Ks determine the coefficients of the Ko rotated
digital filters derived from the onc-dimensional continuous filter by
multiplying the poles by (#/2)fl(k) or by tan[(m/2)fi(k)] if the
frequency axis is to be prewarped (cf. (11) in Ref. 7).

4. With the Ko rotated filters in cascade find the cutoff frequencies
of the resultant two-dimensional filter, fi(k), k = 1,..., Kas, in the
directions 8(k) + 90°, k = 1,..., Ko, respectively. If the algorithm
that searches for these cutoff frequencies does not converge, then
return to the calling program with JERROR = 3.

5. If |fu(k) ~ fi(k)| < efork = 1,..., Ke where ¢ is the specified
maximum error of the cutoff frequency in each direction; then return
to the calling program with [IERROR = 0. In this case the execution is
completed satisfactorily.

6. If there is no improvement in the last iteration step, that is if

Ky Ky

S - K] = 00 - K|

k=1 k=1

then return with IERROR = 4.

7. Leti <« i+1.If i is greater than the maximum allowed number
of iterations then return with IERROR = 2.

8. Let fi(k) = fi7'(k) + fu(k) — fI'(k), k=1,...,Ks.

9. Go back to step 3.

Since stable rotated filters can be obtained only for angles of
rotation between 270° and 360°, a parameter is used which specifies
how the filter is to be combined with data transformations to obtain
the desired symmetries. Another parameter (normally set to zero) may
be used to modify the coefticients slightly to guarantee stability for atl
inputs (cf. Fig. 3 in Ref. 7). Thus, the overall system has the required
cutoff frequencics and is stable.

For non-circularly-symmetric filters, it may seem possible to obtain
elliptic shapes or other shape types from circularly-symmetric filters
by changing the scaling along each axis. However, in general, this is
not possible because the filter would most probably become unstable.
On the other hand, the technique that we described previously results
in stable filters.

, Ke of the two-dimen-
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Two-dimensional complex cascade programming

Since the previous design technique leads to a factorable transfer
function an algorithm is now proposed for the realization of two-
dimensional IR filters whose transfer function is factorable as
follows;

Hz,z,) = A H a,. + a),zy + alazy + abyz,2, )
"o b}z, + b2z, + bhyz,2,

where A is a real gain constant and the coeflicients aj} and b, (j.k =
1,2) may be complex. In this paper it is assumed that their conjugates
aj* and b (j,k = 1,2) are also present in the corresponding product,
to result in a filter impulsc response which is real. Common factors
have been removed from the numerator and the denominator.

Equation (5) can be physically interpreted as a cascade of bilinear
second-order systems and can be readily rcalized by complex cascade
programming. The technique of one-dimensional complex cascade
programming was introduced by Knowles and Edwards” and enables a
pulsed transfer function with complex poles and zeros to be realized.
The operations are programmed using real arithmetic and are
simplified using the fact that the impulse response of each pair of
conjugate filters is real. The cascade form of two-dimensional recur-
sive filters has some advantages over the direct and paralle! forms and
results in a reduction of the output computational error.!” '8

For complex cascade programming (5) is expressed in the form*

N
Il m@wBrers 6

Ng
H(z,,2) = A ] [HMNz,,22)
i=1 j=Ng+1

where 2N — Ny = M, HR}(z,,2,) for 0 < i = Ny are the filters in the
cascade which have real coefficients, and Hy(z,,z,) and Hff(z¥,2¥) for
Ngr < j < N are the remaining complex filters in the cascade. That is

1 + ab,z, + alyz, + abyz,2,

HR®(z,,z 0<i<N Ta
(22 & 1+ bh,z, + blazy + byz,2, R (T9)
wherethea’s and b’s arereal.
1+ a},z, + alyz, + alyz,2, p
Hy(z,, Nr<j=N 7b
(21,22 £ 1+ bl,z, + blyz, + by2,2, R (70)
1+ + al¥z, + aljz,z
Hi(zt,28) & aitz + alfz, + alfz,zy Nr<js<N (70

1+ bjfz, + bi¥z, + bisz,2,

where the a’s and b’s are complex and the a*’s and b*'s are their
complex conjugates. Without loss of generality we can assume that
al, = bl, = 1 for 0 < i = N, by appropriate adjustment of the scalar
gain factor A.

A block diagram for complex cascade programming is given in
Fig. 2. With reference to this block diagram and equations (7), the
complex cascade programming of H(z,,z,) consists of successively
solving a set of difference equations for g(k, ) where k and ¢ are the
two-dimensional sequence indices in the directions which correspond
to the unit delay operators z, and z,, respectively. These equations are
shown in Table 1. '

Equation (8b) corresponds to the realization of the transfer function
in (7a). Equations (8¢) and (8d) correspond to the transfer function in
(7b), while (8¢) corresponds to the transfer function in (7c). It should
be observed that, for each pair (k,{), the sequence {d k,®):
1,2,. N} is rcal and the sequence {eik,6): i = Np+1, NR+2

N} is complex (see Fig. 2). These two scquences are simply
mtermcdmte values towards the calculation of the final output g(k, €),
when the input is f(k,¢). A featurc of the recursive equations (8) is
that they involve real arithmetic operations only.

*The notation H¥(:Y, 13) may seem a bit awkward but it is mathematically necessary to
denote that only the coefficients of H\(2,,22) are conjugated, not the variables z, and
23, which are affected by two complex conjugate star signs that cancel,
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1tk 1) dythl) g, (k.l) o0 (k1) dtkl) gl Iy, (k)
>—.- A H,n(z, .5) = . H;H(z, .5) — e 2 H;(II 2) =
oy (kl) RILY aarme LYV L) o, k) (K 1
N H%.,&,.ZJ) 3 H%‘;(lﬂzz . (X I'II (z,.z,) & (ki) /‘/I..("I"I;) _ﬂ_ seae
dy. k1) eylki) . dy (ki) 2 gtkt)
‘e H~ (z.2) - H~ (z.25) ~ oL >
Figure 2: Block diagram for two-dimensional complex cascade programming.
TABLE 1
do(k, &) = Af(k,¢) (8a)
dy(k, €) = dii(k, €) + ahdiy(k—1,6) + alydiy(k, €=1) + agpdi(k—1,6-1) +

- bldi(k—1,€) — blud;(k,€~1) — blydy(k—1
+ Refal,)di—,(k—1,¢—1) — Re[b};}Re[e,(k—1
+ Im[bl;]Im[e;(k—1,€-1)]

— Im[b},}Refe (k—1,¢)] — Re[b},)Im[e (k—1
— Re[bl;}Im[e;(k,€—~1)] — Im[b},] Rele (k-1
— Re[b},)Im[e(k—1,€-1)]

+ Re[al,]Re[e(k—1,€~1)] + Im[a},} Im[e,(k
— Re[bl,1d(k,€~1) — Re[bl,]dy(k—1,£-1)

g(kve) dN(k»e)

’e'—l)
Refe (k, £)] = diy(k, €) + Re[a},]d;y(k—1,€) + Re[aj,)di—i(k,€~1) +

— Re[b!;]Refe (k, £—1)] + Im[bl,]Im[e;(k, £ —1)] — Re[bl,]Refe(k—1,£~1)] +
Imfe,(k,#)] = Im[a}]}di-,(k—1,€) + Im[a},}d;- (k. £—1) + Im[a},]d,_;(k—1,6—1) +
-]+
dik,©) = Rele(k, €)] + Im[a},}Im[e(k,€)] + Refa},}Refe(k—1,6)] +

+ Im[al,]Im[e (k—1,€)] + Re[als] Re[ey(k, €—1)] + Im{a};}Im[e,(k,£—1)] +
—1,¢€-1)] — Re[b},]1di(k—1,6) +

fori=1,2,...,Ng (8b)

,6)] + Im[b},]Imfe (k—1,6)] +

fori = Ng+1,...,N (&)

,€)1 — Im(bi;]Rele (k, £~} +

fori = Ng+1,...,N (8d)

fori=Ng+1,...,N (8e)
(8)

It should be noted that the number of real multiples required for the
realization of each complex pair of filters is higher than those rcquired
if each pair was replaced by a fourth order section with real
coefficients. However, this method still has advantages over the direct
method. The number of multiples is not the only criterion for optimum
filter realization. Stability characteristics, coefficient sensitivity and
computational noise are generally worse in higher order sections.
Other considerations, such as the numbecr of delays and the form of
the transfer function, given by the design technique, are also impor-
tant. Indeed, when the filter design technique leads to a transfer
function of the form given by (5). the complex cascade programming
realization allows the immediate realization, without any further
manipulation of coefficients, which would require additional opera-
tions. This was one of the reasons which led to our investigation of
complex cascade realizations in two dimensions.

Computational errors in two-dimensional complex
cascade programming

Since actual operations are carried out with only a finite number of
bits there is a cumulative roundoff error which propagates through the
stages of the filter. In the steady state, the computational error can be
represented by a set of additive noise processes at the output of an
infinite precision arithmetic filter.!® We shall determine an expression

for the computational error to be added to the output of the ideal
cealization to account for the finite wordlength of the actual filter. This
analysis is an extension of the one-dimensional analysis of Ref. 17.

If we call {w,(k,€):i=0,1,2,... ,3N —2Ng}, the roundoff errors
incurred in the evaluation of cquations (8), then the actual outputs of
the elements in Fig. 2 become the quantities shown in Table 2.

Defining the computational error guantities as the differences be-
tween the actual and the idcal outputs of the elements in Fig. 2, we
have

e4k,€) D dik,6) — dyk.6) (10a)
£k, ) & dik,6) — dik.O) 0<i=Ng (i0b)
Ear-ana-2(k €) D Relej(k.6)] — Refey(k.€)] Nx<i=<N (10c)
Ear-aner(k.6) & Imlej(k.6)] — Im{e,(k.O)] Ny <i<N (i10d)
En-on k€)= ditk, ) — dik.6) Ny <is=N (10¢)

then from (8f). (9f) and (10¢) the computational error £.(k,¢) at the
filter output is

ek, f) = g'k,6) - gk, f)
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TABLE 2
do(k.€) = Af(k,€) + wy(k,€) (9a)
di(k.€) = dj_,(k,€) + a},di_,(k—1,€) + al,d|_,(k,£—1) + al,d|. (k=1,6-1) +
= bl ditk—1,6) — blydi(k,€~1) — bludj(k=1,€=1) + w(k.£) fori=1,2,...,Ngy (%)
Relej(k,€)] = di_,(k,€) + Rela},}di_ (k—1,¢) + Relal,]d{-(k.€—-1) +
+ Refal,]dj-(k—1,£—1) — Refb},]Refei(k—1, )] + Im[b},] Im[ei(k—1,6)] +
= Re[bi;]Re[ei(k, €~1)] + Im[b},]Im[e(k, £—1)] — Re[b};] Re[ej(k—1,f-1)] +
+ Im{bl,] Im[ej(k~1,£~1)] + wyy_;x,-2(K, €) fori=Ngz+1,...,.N (%)
Imlej(k, )] = Im[al,]d{_-(k—1,€) + Im[al,]d{_(k.€—-1) + Im([a},])d{_,(k—1,€—1) +
~ Im[b},]Re[ei(k—1,£)] — Re[b},]Im[e{(k—1, £)] — Im[b};]Re(ei(k,f~1)]} +
— Re[bl;]Im[ej(k, £~ 1)] — Im[b},]Refe{(k—1,6—1)] +
- Re(b,] Imfej(k~1,£—1)] + wy,_yn,- (K, €) fori = Ng+1,...,N (9d)
ditk, ) = Re[ei(k, £)] + Im(a};]Im{ei(k, £)] + Re(a};]Refei(k~1,0)] +
+ Imfa},}Im[ej(k—1,£)] + Re[al,]Refei(k, £—1)] + Im{a},]) Im[ei(k,£—1)] +
+ Refal,]Re[ei(k—1,¢—1) + Imfal,]Im[ej(k—1,€—1)] — Re[b};}d{(k-1,€) +
— Re{bl,}di(k,£—1) — Re[bl,]di(k—1,£—1) + wy_sn.(k, ) fori = Ng+1,... , N (%)
g'k,6) = du(k,6) of)
Equation (11) gives the computational error to be added to the
¥oln1) output of the ideal realization to account. for the finite wordlength of
the actual filter.

) >——= A dan1) In the time domain the total computational error can be equivalently
expressed as a sum of double convolutions of the impulse responses of
the filters of Fig. 2 and the input noise processes.

fa)
We may now assume that the system has reached steady state
w (n1) (stationary noise sources), that the additive noise sources are mutually
uncorrelated with zero mean, a flat power spectrum (white noise) and
! a variance o, that is
d,(x1) G, @ > d'(ri) (w(k,6)) =0
' ’ i=0,1,2,...,3N-2N
Wiy = ot L
-G, Here the symbol ( - ) is used to denote statistical average. The total
computational error £.(k,f) will then be a stationary process with
() O~isN, Zero mean

a0 ah

~ Meinh

Figure 3 (a)-(c): Block diagrams for the elements in Figure | including the computa-
tional errors.

Taking the two-dimensional z-transform of equations (8) and (9)
the block diagrams in Fig. 3 were obtained and the relationship
between the computational error &.(k,€) and the error sequences
{wik,6):i=0,1,2,...,3N=-2Ng.} was determined. This relation
is shown in (11) and is interpreted in Fig. 4.

SN-2Np

Ee(ziz) = 3, Cilzu2) Wiz, 2)

i=0

(m

where the C;’s and G,'s are specified in Table 3.

(e.(k,0)) = 0.

The varidnce oF can be obtained by application of Parseval’s
theorem in two dimensions, which in the case where the filters
C,(zy,2,) converge on the unit circles in z, and z,, results in

g2 Mo
o & (kO) = 755 D,
i=0

f" f"]C.(ejl‘,ej")lzdp.dv (13)
- J-7

In the gencral case where the noise sources (w,(k,€)) are not white,
but stationary with zero mean and power spectral densities Pw,(z,,2;)
it is straightforward to extend (13). Notice that for a given type of
arithmetic, (i.e. fixed-point or floating point, truncation or rounding),
the means and variances of the noise sources {(w,(k,£)) can be
determined. Their values can then be used to obtain the mean and
variance of the total computational error at the filter output.

In the case of fixed point arithmetic the order in which the second
order sections are cascaded can have a great effect on the output
computational error, because noise generated in a particular second-
order section is filtered by all the succeeding sections. Thus there
arises an “interesting problem of determining the best pairing of
numerator polynomials with denominator polynomials and the test
ordering of the filter scctions, so that the output signal-to-noise ratio is
maximized. The problem is further complicated by the fact that
signals must be scaled so that overflow does not occur at any point in
the cascade of sccond-order systems, Jackson has studied problems of
that nature but for one-dimensional digital filters only.?®
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H(zl . Zz)
A

CO(ZI ' 22)

j=i+l j=Np+1

Cai-2ng-2(21,Z2)

[1+ G3){(1+ Gy)* - (GY)?)

j=i+l

~GA[GY(1+GY) < GGl [H

[l

Cai—gNg~
o) = TG + G+ (G |

=i+l

GL(1+GY) + G!G} [

I

Csl—an(zh zy)

1 N
1+ G} [H Hy(z,,z) Bzt za‘)]

TABLE 3

1 Ng N
Ci(z1,29) =176, [H HJ(Z:-Zz)] [H Hy(z;,2) HY (2}, 28)

N
Hl(zl ’ z2) Hf(zi'» Z{)

. -
| ] RO Ht(zr,z:j

=i+l
Gl = GMz1,22) & 1+ Relal]z, + Re[al)z, + Re[aks]z,2
G} = Gl(z,,z) & Im[a}, ]z, + Im[al,)z, + Im[aly]2,2,
G = Gi(z,,2) & Re[b},)z; + Re[bl;)z, + Re[bl}z,2,
Gl = Gi(z1.,z) 2 Imbly]z, + Im[bly]z, + Im[ble]z,2

The product term in these equations is set to unity when min(j) = N

-

for0<ian

-

forNg<is<N
_J

forNg<i=N

forNg<i=<N

fori=1,2,...,N
fori=1,2,...,N
fori=1,2,...,N
fori=1,2,...,N

Realization of two-dimensional IIR filters
in a general purpose digital computer

The nature of recursive realizations makes them very suitable for
scquentially stored data. Causal filters* are readily implemented.
Noncausal filters can be synthesized by means of linear spectral
transformations. '*'* Computer program listings for the design and
realization of two-dimensional recursive filters of the type discussed
in this paper are given in Ref. 16. Notice that some of the data
transformations of Fig. 1 (rotation by 90° and 270° and transpositions)
must have access to both rows and columns at the same time for
interchange operations, not easily done when the data are stored
sequentially in auxiliary storage. The same problem exists with the
eight different recursive algorithms of Fig. 1 because each one pro-
cesses the data in a different order. Therefore, when the amount of
memory available is not sufficient to hold the cntire array, auxiliary
storage is needed and neither of these two techniques is suitable by
itself. We have proposed an alternative'® which results in at most two
passes of the data through main memory.

Suppose that we have to implement a filter whose transfer function
is a cascade of clementary transfer functions as in (5) and Fig. 2.
Assume that the data matrix is too large to be contained in computer
main memory and the data are stored sequentially by rows in auxiliary
storage, divided into logical records of K rows cach. K is chosen so
that each submatrix consisting of K consecutive rows can be stored in
main memory.

The key point in this implementation is the ordering of the blocks in
Fig. 2 corresponding to the cascade of elementary filters in (5). Figure
1 shows all the possibilities for the direction of recursion, sense of
recursion and starting point on the input data matrix. Since that matrix
has been divided into submatrices of K rows cach, which will be
processed sequentially, the algorithms whose diagrams have arrows
originating in the first row and those with arrows originating in the last
row cannot be implemented simultancously. Therefore, in the block
diagram of Fig. 2 we lump together all the filter algorithms whose
diagrams have arrows originating in the bottom row (namely, Figs.
2(a). (b). (¢) and (h)) followed by a sccond set of filters whose
diagrams have arrows originating in the top row (namely, Figs. 2(c),
(d). (f) and (g)). Then successively read cach record (submatrix of K

*A two-dimensional causal filter is defined as one that recurses in the (+m, +n)
direction (cf. (2)).

rows) into the computer main memory and process it with the first set
of filters using the technique of data transformation previously dis-
cussed. The result is written back into auxiliary storage. The last
output row of each elementary filter must be saved in main memory to -
serve as the initial conditions for the next record. The same process is
done with the remaining records until all the data have been pro-
cessed. Then the operation is repeated for the second set of filters and
with the records in reverse order.

Thus, this technique is compatible with the sequential access of the
data and at most two passes of the data through main memory are .
necessary. It should be noted that while two passes are necessary in .
implementing filters with zero phase response, only one pass would
be required in some cases where the zero phase response requirement
is not necessary.

Examples of impulse responses of two-dimensional recursive filters
are shown in Fig. 5 through 10. The filter coefficients were obtained as
described under **Control of the cutoff frequencies’”. To calculate the
impulse responses cquations (8) were solved in each case for 41 X 41
discrete input values, where the only non-zero value was f(2121) =
1.0 and zcro initial conditions were always assumed. Figures 7
through 10 show impulsc responses existing in more than one quadrant
because they were obtained with non-causal filters. The non-causal
filters were realized by combining rotated filters and data rotations
(i.e. rotations of the matrix containing the data by multiples of 90°),
as shown in Ref. 7. The filters shown in Figs. 9 and 10 have
zero-phase response and their magnitude responses are the square of
the magnitude responses of the filters shown in Figs. 7 and 8, respec-
tively. An example of a typical magnitude response is shown in Fig.
11 and more examples are shown in Ref. 16.

TABLE 4

CPU time in seconds employed in computing
the impulse responses

Figure No. 5 6 7 8 9 10
CPU Time

in Seconds 0.3 0.35 030 0.55 073 142
M (see Eq. 5) 2 6 4 12 8 24

Number of
Data Rotations 0 0 2 2 4 4
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Figure 4: Noise model in two-dimensional complex cascade programming.

SRR
-’:5-':"-’45.:.-}::{_ ZZ

LRI 2R

g 22 -, i, Sy

&.-:.:_:.:-.1::.}-..55
AL LTI IE T

(REER BT R IR AA ky
72 Z Z
2

Figure 8: Perspective plot of the impulse response of a cascade of six second-order
Burterworth filters rotated by multiples of 30°.

Figure 5: Perspective plot of the impulse response of a second-order Butterworth filter
rotated 315°.
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) . 7 Figure 9: Perspective plot of the impulse response of a filter with zero-phase response
Figure 6: Perspective plot of the impulse response of an elliptically-shaped filter formed by cascading four second-order Butterworth filters rotated by multiples of 90°.
Jormed by cascading three second-order Butterworth filters rotated 285°, 315° and
345°.
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Figure 10: Perspective plot of the impulse response of a filter with zero-phase response
Figure 7: Perspective plot of the impulse response of a cascade of two second-order  formed by cascading twelve second-order Butterworth filers rotated by muliiples of
Butterworth filters rotated 225° and 315°. 30°.
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Figure 11: Magnitude response of the filter whose impulse response is shown in
Figure 10.

Equations (8) were coded in FORTRAN IV. The source listings are
given in Ref. 16. The machine used for the computations was the IBM
SYSTEM/370-165 with a FORTRAN 1V (H Extended) compiler and
the perspective plots were produced with a CALCOMP plotter. Table
4 gives the CPU time cmployed in obtaining the data for Figs. 5
through 10. The CPU times given here include the time necessary for
data rotations.

Conclusions

A summary of design techniques for two dimensional recursive
filters was presented.

The problem of controlling the cutoff frequency was discussed and
a new algorithm useful for achieving given specifications was pro-
posed. The technique of complex cascade programming was adapted
for the implementation of factorable two-dimensional IIR filters.
Although the number of multiplies for complex cascade programming
is higher than those required if each pair of complex sections were to
be replaced by a fourth order section with real coefficients, this
method has still some advantages.

The computational errors in two-dimensional complex cascade
programming were discussed. It was shown that these errors can be
represented by a set of error sequences additively contaminating the
output of an ideal realization. The transfer functions relating these
error scquences to simple roundoff errors were derived and an expres-
sion was obtained for the error that should be added to the filter output
of the ideal realization to account for the finite wordlength of the
actual filter. Finally. the problems of data management when large
matrices are stored in auxiliary storage were briefly considered. These
techniques have been used in the design of digital filters for the
tomographic enhancement of radiographs. '
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