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esign of: Circularly  Symmetric Two-Dimensional Recursive  Filters 

Absfrucf-The digital  filtering of two-dimensional signals offers 
the many  advantages  characteristic of digital  computers,  such as 
flexibility and  accuracy.  Applications exist in the processing of images 
and  geophysical  data. A technique is presented for designing stable 
two-dimensional  recursive  filters whose magnitude  response is ap- 
proximately  circularly  symmetric. This i s  achieved by cascading  a 
number of elementary  filters  which  are called rotated  filters because 
they are  designed  by  rotating  one-dimensional  continuous  filters 
and using the  two-dimensional  z-transform  to  obtain the corre- 
sponding  digital  filter.  Stability of these filters is considered in detail 
and the results obtained  are stated in two  corollaries. In particular 
it is proved  that  rotated  filters  are stable if the angle of rotation is 
between 270" and 360'. Finally, methods of analysis and design of 
the shape, circular  symmetry,  and  cutoff  frequency of two-dimen- 
sional  recursive  filters are discussed.. 

T 
I. 1NTR.ODUCTION 

HE digital filtering of two-dimensional  signals  offers 
the  many  advantages characteristic of digital com- 

puters, such as flexibility and accuracy. ApplicaOions 
exist in  the processing of images and geophysical data. 
In  image  processing there is  no preferred spatial frequency 
axis. It is therefore desirable to  process  images with 
filters whose frequency response is approximately circu- 
larly symmetric. 

The design techniques for nonrecursive filters in one 
dimension can  often  be extended to two dimensions in order 
00 obtain filters with circularly-symmetric magnitude re- 
sponse [1]-[3].  On the other  hand, the design of recursive 
filters in two dimensions  becomes  difficult due to  the 
fact  t.hat a polynomial in two variables k(z1,z , )  cannot in 
general be factored into first- or second-order  polynomials. 
This implies that  many one-dimensional  design tech- 
niques cannot be readily ext.ended to two dimensions and 
that a high-order  two-dimensional filter cannot in general 
be realized in parallel or cascade form to reduce the effect 
of quantization noise. It is  also di6cult  to  test  the stabil- 
ity of two-dimensional recursive filters  except  for  simple 
filters.  Because of these difficulties, little work has  been 
done on  designing  two-dimensional  recursive filters, even 
t-hough the use of recursive imtead of nonrecursive filters 
has t'he potential of saving both  computer t'ime and com- 
puter memory [4]. A technique exists  for mapping one- 
dimensional into two-dimensional filters with arbitrary 
directivity in a two-dimensional. frequency response plane 
[SI, [SI. These filters are called rotated filt,ers  because 
they  are obtained by rotat,ing one-d-imensional  filters. 

I n  this  paper we show how to cascade a number of 
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rotated filters in order to obtain a stable circularly- 
symmetric filter. This  approach approximates the circular- 
shaped contour levels  of the magnitude response by a 
polygonal shape. 

In Section I1 we review  some concepts on  two-dimen- 
sional recursive filters that will be used later  in t.he paper. 
Section I11 shows a generalization of the technique of 
Shanks [SI to design rotated filters and  in Section IV we 
solve the problem of determining the  stability of rotated 
filters beforehand. The technique for  designing  circularly 
symmetric recursive filters is  described in Section V. 
Finally, in Section VI we  show  briefly  some methods of 
analysis and design of the shape, circular symmetry,  and 
cutoff frequency of two-dimensional recursive filters. 

11. TWO-DIMENSIONAL  RECURSIVE FILTERS 
A two-dimensional recursive filter can be described by 

a linear difference equation.  The general form is 
M a  N ,  

g(m,n) = U i j f ( r n  - i + 1,n - j + 1) 
i=* +1 

Ma Na 

- C C h ( r n  - i + 1,n - .i + 11, (1) 
i=l j=1 

i , j  # 1 simultaneously. 
Here it is  assumed either that all output values 
q ( m  - i + 1,n - j + 1)  have  been computed previously 
or are equal to zero (boundary condit,ions) . 

Equation (1) can be  rewritten in  the form 
M b  N b  

bijg(m - i + 1,n - j + 1) 
.j=l j=1 

M, N .  

= U i j f ( r n  - i + 1,?2  - j + 1) (2) 
i=l j=1 

where bll = 1. 
Equation ( 2 )  can be solved  for g(m,n) [cf. (l)], 

n - N b  + 1) and in each  case the d-ifference equation 
obtained corresponds t'o a two-dimensional  recursive filter 
recursing in  the (+m,+n), (-m,+n), (+m,-n), or 
( -112, -n) directions, respectively [7]. 

A recursive filter is said to be causal if it  recurses in  the 
(+m,+n) direction [7], A causal  filt'er is realizable if 
its impulse response  satisfies the property 

g(m - M b  + 1,n), g(m,n - -vb f I ) ,  or g(nz - N b  + 1, 

h(m,n) = 0, m,n. < 0. 

A useful representation of ( 2 )  is obtained by the two- 
dimensional x transform or double x transform.  This 
transform is defined as follows 
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m m  

X(z1,x2) P C C x(m,n)~1~22~ (3) 
m=-m 12-m 

where z(m,n) is  a two-dimensional sequence and X(x1,x2) 
its two-dimensional x transform.'  The  domain of definition 
for X(zl,z2) is its region of convergence in  the zl,x2 plane. 
The properties of the two-dimensional z transform are 
similar to  the properties of the x transform  in one dimen- 
sion. 

If the sequence x(m,n) is of finite  duration  and is 
bounded then (3) has  finite  limits  in  all the summations 
and X(zl,xz) converges eveqwhere in  t,he xlx2 plane. 

The two-dimensional z transform of ( 2 )  can be shown 
[SI to  be 

A ( z ~ J z ) F ( z I , z z )  = B(zI ,z~)G(z~,z~)  

or 

G ( ~ 1 , ~ 2 )  = H ( ~ 1 ~ 2 2 )  F ( ~ 1 ~ x 2 )  

where F (x1,xZ)  and G(21,z2) are  the two-dimensional x 
transforms of the  input and the  output sequences of the 
filter,  respectively,  and 

is the transfer  function of the filter.  The  frequency re- 
sponse of the filter is obtained  by  evaluating (4) for 
x1 = exp ( --julX)  and x2 = exp ( - ja2Y),  where X and 
Y are  the sample intervals in  the x and y directions, 
respectively. 

The transfer  function H(zl,z2) given in (4) can  be 
associated  with the recursive  filters recursing in the 
directions (-m,n), (m,-n) ,  and (-m,-n) by changing 
x1 by x1-l, zz by z2-l, or both,  respectively. 

111. DESIGN OF ROTATED  FILTERS 
Suppose a one-dimensional continuous  filter whose im- 

pulse response is real,  is given in its factored form 

m n 

Hl(s) HoCn ( S  - q i ) / I I  (8 - pi) 1 ( 3 
i=l i=l 

where Ho is a  scalar gain constant.  The zero locations qi 
and  the pole locations p i  may be complex, in which  case 
their  conjugates are also present in the corresponding 
product. Assume that  this filter  has  unity cut'off angular 
frequency. 

The  filter given in (5) can also be viewed as a two- 
dimensional  filter  that.  varies in one dimension only and 
could be written  as follows: 

Some authors use an equivalent definition by replacing the  unit 
delay operators 21 and 22 in (3) by zI-I and zz-l, respectively. We use 
the definition in (3) because it is more common in  the two-dimen- 
sional  recursive filter literature [B], [7]. 

m n 

H Z ( S I , S Z )  = HI(SZ) = Ho[II ($2 - q i ) / J I  (SZ - pi)]. (6) 
i-1 i=l 

Rotating clockwise the (s1,s2) axes through  an angle p 
by  means of the transformation (7) we obtain  the filter 
of (8), whose frequency response is rotated  by  an  angle 
- p  with  respect to  the frequency response of (6) 

H z  ( S{,SZ') describes a  continuous two-dimensional filter 
in the new coordinate  system of s i  and sz'. To produce the 
corresponding two-dimensional discrete  filter we use the 
two-dimensional bilinear x transform [SI defined by  t'he 
following two equations: 

It is assumed throughout the  study  t,hat  the  sample 
interval T is the same  in  both  directions.  Substituting (9) 
into (8) we obtain 

for1 < i s m  

form < i < M 

f o r l s i l n  

for n < i 5 M. 
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Equation  (10) can be physically interpreted as a cas- 
cade of bilinear second-order systems and can be readily 
realized by complex  cascade programming [SI. The oper- 
ations are programmed using real a,rithmetic and  are sim- 
plified  using the fact that  the impulse  response of each 
pair of conjugate filters is real. The cascade form of 
two-dimensional  recursive filters has sonle advantage over 
the direct form [SI. 

The desired  cutoff frequency of the filter in (10) can 
be  obtained  by  substituting in (11) T by rfr or by 
2 Dan (7r/2)fr if the frequency axis has to be prewarped 
[lo, cf. eq. (9)] where fr is the desired  cutoff frequency 
expressed as a fraction of t,he Nyquist frequency, that is 

f7 = f/fw 
where f~ 4 1/2T is the Nyquist frequency. 

Examples of rotated filt'ers are given in Figs. 1 and 2.  
These figures  show  cont'our maps of the magnitude re- 
sponses of a second-order Butterworth filter rotat'ed 
through 0" and 285",  respectively. Frequencies are shown 
as fractions of the Nyquist frequency and  in every case 
the magnitude response has been normalized to a peak 
response of 1.0, the contour interval is 0.1, and  the cutoff 
frequency is 0.2. 

IV. STABILITY OF ROTA,TED FILTERS 
Some  basic t,heorems concerning stability of two- 

dimensional recursive filters are reviewed in Appendix  A. 
Using Theorem 3 the conditions that  the coefficients in 
(10)  must satisfy to ensure the  stability of the filter 
were derived. The results are given in  the following two 
corollaries. 

Corollary 1 
A causal recursive filter with  transfer function2 

1 i 

Fig. 1. Contour plot o f  the two-dimensional magnitude response of 
a second-order 13utterworth  filter rotated 0". 

frz 

- 7  0 r, I 

Fig 2 Contour plot o f  the two-dimensional magnitude response of 
second-order Butterworth filt.er rotated 285". 

Proof: We want to show that for the class of filtcrs 
specified in  this corollary, (13)  and  (14)  are equivalent 
to  the "if" part of Thoorem 3 in Appendix A. 

Setting Bi(zl,z2) = 0 we obt'ain 

(15) 

which is a bilinear tsansformat'ion mapping circles into 
 circle^.^ 

Clearly, for the filter IJi(z1,zZ) condition I )  of Theorem 3 
is  satisfied if and only if 

where c; is the center  and ri is the radius of the circle 
image of t'he unit.  circle bv the transformation x2 = f i (  21). 

The * denotes complex conjugate. 3 Here we include straight lines as circles with  infinite radii 
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We have  derived expressions for ci and ri as  a function of 
the filter coefficients in Lemma 1 of Appendix B. 

But (16) is equivalent to (13) by  substituting  (B2) 
and (B3) into (16), that is 

which is equivalent to (13). 
For  condition 2) consider the inverse transformation 

21 L ~ f a - l ( x 2 )  l z z = o  = - b11i/b21i. (17) 

Therefore,  for the filter Hi(21,22) the second condition 
of Theorem 3 is verified if and only if I $1 I > 1, that is 

I - bni/b21i 1 > 1 

which is equivalent to (14). 
Since (13) and (14) compare magnitudes  only, the 

same  conditions  apply to Hi(z1,zz) and Hi*(zl*,zz*) ; there- 
fore,  in  general (13) and (14) have to be checked for 
i = 1,2 , - .  . ,N = ( M  + N,. ) /2  5 M only, where N ,  is the 
number of filters Hi(xl ,x2)  with  real coefficients and iM 
is  the  total number of filters Hi(xl,z2) in  the cascade. 

If every  filter Hi(z1,z2) in the cascade is stable,  then 
clearly the filter H(z1,22) is stable. Q.E.D. 

Specializing Corollary 1 to  rotated filters  with  their 
coefficients as defined in (11) we obtain Corollary 2.  

Corollary 2 
Rotating  a  stable one-dimensional continuous  filter  by 

an angle p in the (s1,s2) plane  and  applying the two- 
dimensional bilinear x transform, the resulting two-dimen- 
sional digital  filter [cf. (10) ] is stable if 270" 5 p 5 360". 

Proof: Substituting (11) into (13) and (14) we ob- 
tain (18) and (19) as sufficient stability  conditions  for 
rotated  filters 

I I ai I - I cos@ 1 1  > I ai + cos@ I (18) 

1 cos p - sin B - ai I > 1 cos p + sin p - a; 1, 
for i = 1,2, . ,A4 (19) 

where ai = Re [( T/2 )p i ]  and p i  represents the location 
of a pole. 

There are no values of ai and p satisfying (18) ; at  
best,  both sides of (18) are equal.  This is because the 
transformation Bi(xl,z2) = 0 has  a fixed point at  x1 = 
22 = -1 (the  other fixed point of the  transformation  is 
-bn/b22).  This pole is cancelled by  a zero because the 
transformation Ai(zl ,x2) = 0 has also a fixed point a t  
21 = 2 2  = - 1. However, the pole and zero might  not 
exactly cancel each other because of quantization. To 
avoid  this, since the center of the circle image lies on the 
real  axis  (see the corollary in Appendix B) , we can always 
shift  the circle image to  the left by a  small  distance e. 
This is illustrated  in  Fig. 3. This  displacement  eliminates 

the overlapping of the two circles at  the point x1 = zz = 
-1. However, in all the filters that we have designed 
using the rotation  procedure there was never a need for 
this shift because the impulse responses decayed suffi- 
ciently  quickly. 

The  set of values that satisfy (18) with  equality  is4 

si = {ai,@: (ai  < 0 n COSP > 0) u (ai > 0 n COS p < 0) 1. 
The set of values that satisfy (19) is 

8 2  = {ai,p: (sin 0 > 0 n ai > COS p )  
u (sinP < Onai  < cosp)].  

The  set of values of ai and p for which rotated  filters 
are stable is given  by the intersection of set SI and  set S2. 

S1 n S2 = {ai,@: (ai < 0 n 270" < p < 360") 

u (ai  > 0 n 90" < p < 180") } .  
The regions of stability  are  illustrated  in  Fig. 4. 
For p = 270" and ,8 = 360" the bilinear  transformation 

in (15) is degenerate. However, in  these cases the two- 
dimensional filter  varies in one dimension only  and it can 
easily be shown that it is stable  provided that  the one- 
dimensional filter  has all its poles in  the LHP (left-hand 
plane). 

Therefore, for stability ai < 0, i = 1,2, - * - , M ,  and 
270" 5 p 5 360". Q.E.D. 

Theorem 4 in Appendix A indicates that it might  be 
possible to obtain  stable  filters for other angles of rotation 
by changing the direction of recursion. That is,  by  sub- 
stituting  either z1 by zl-l, or zz by z2-', or both,  in  the 
filter  transfer  function H ( z l , z 2 ) .  

The  application of Corollary 1 to  all cases of interest 
results  in  Table I .  Nevertheless,  all the possibilities indi- 
cated by Table I result  in  a  filter  with the same  magnitude 
response, that is, the effective angle of rotation  always 
satisfies 270" < Be < 360". To obtain  a  rotation  through 
a  different angle the  data can  be  filtered in a distinct 
manner. Consider for example the following. 

In  the frequency  domain the filtering  operation  can  be 
represented  as 

G[exp ( --jolT) ,exp ( - ju2T)]  

= H[exp ( --julT) ,exp ( -ju2T) ] 

- F[exp ( --jolT) ,exp ( -juzT) 1. ( 20) 
It is easy to see that a  rotation of the filter  transfer 

function H[exp (--julT) ,exp (--jo2T)] by an angle e is 
equivalent to  a  rotation of the two-dimensional Fou- 
rier  transform of the two-dimensional input signal 
F[exp (--julT),exp (-ju2T)] by  an angle - 0  and  a 
rotation of the  output  by  an angle 0. Since the  rotation 
of a  function of two  variables in  the space  domain causes 
an equal  rotation of its Fourier  transform  in the frequency 
domain [SI, to  obtain  a filter  rotated  by  an angle 8, 
when 0" < p < 270", we may rotate  the  matrix contain- 

n means "and"  and U means "or." 
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I 

Fig. 3. Stabilizatior~ of  marginally  unstable  rotated  filters. 

I I I I 

0- 90- ld0. 270. 360' 

@ Region of stability for the  first condition. 

f@ Region of stabiliQ for the second condition, 

~ ; M S  in which  a  rotated filter is stab/e. 

Fig. 4. Regions of stability for rotated  filters  with  transfer  function 
H(z1, 4. 

TABLE I 
STABILITY REGIONS FOR ROTATED FILTERS 

~ ~~~~ 

Transfer function 

R.H.P L.H.P. filter 

one-dimensional filter His) of the 
Location of the poles of the original 

two-dimensional 

H(zl,~2) 90' < 6 < 180' 270' < 6 < 360" 

1 I l 

ing the  input  data by -go", - 180", or --270°, rotate 
the filter by Pf,  where 270" 5 Pf 5 360" for stability, 
perform the filtering operation and finally rotate  the 
output  matrix to  the original position. Since the  data are 
usually given in  the form of a  matrix, which  allows us  to 
perform the digital filtering operation, ie can be easily 
rotated by angles which are multiples of YO0. 

When choosing the angles-of rotation for the  data  and 
for the filter the following equation has to be satisfied 

(21) 

Pe effective angle of rotation of the filter with respect 

/3f angle of rotation of the filter (270" 5 pi 5 360" 

,& k90" = angle of rotation of the  input  data matrix 

to  the original data  matrix; 

for stability) ; 

( k  is an  integer). 

Thus, given be, the  appropriat'e value of k has to be 
chosen such that = pe + k90" and 290" 5 /3f 5 360" 
are satisfied. Note that all the angles are measured 
counter-clockwise and modulo 360") so k 2 0 because 
/3f 2 Be always. After filtering, the  output matrix  has to 
be rotated by an angle --&. A, block diagram of this 
technique is given in Fig. 5(a),  where R denotes a  rota- 
tion by ,& and H denotes a @/-rotated filter. The system 
is equivalent to a Be-rotated filter with = - &. 

The rotat.ion of the  data is not  the only  possible soh- 
tion. There  are ot.her transformations of the  data which 
change the direction of recursion. These transformations 
are  the  matrix transposition with respect to each diagonal 
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( 4  * 
(b) * 
(4 +H+pHq- 

(dl - H H R k  

Fig.  5. Realization of noncausal  filters by combining  data  rotations 
with a causal  filter. 

and  the horizontal  and  vertical  mirror images. An alter- 
native  solution to  the transformation of the  data may be 
obtained  by using algorithms  recursing  in  other  directions 
(noncausal  filters). 

V. DESIGN  OF  FILTERS  WITH CIRCULAR 
SYMMETRY 

We have shown that stable  rotated  filters  can be ob- 
tained for any effective angle of rotation (&). Therefore, 
cascading a  number of rotated  filters whose angles of 
rotation  are  uniformly  distributed over 180" results in a 
magnitude response which approximates a circularly sym- 
metric  function  by a polygonal. This polygonal has an 
even  number of sides because with  each  rotated  filter we 
obtain  two sides of the polygonal. The more  filters that 
are  cascaded, the more sides the polygonal has  and the 
better  the circular  symmetry. 

Suppose that  the angles of rotation  are between 180" 
and 360". When the angle of rotation is p, 180" < p < 
270', we have to transform the  data matrix according to 
what was said  in  Section IV, then filter  with a 6 + 90" 
rotated  filter,  and  inverse-transform the  output matrix. 
If p is distributed between 180" and 360", these  filters 
rotated  by p + go", 180" < < 270", coincide with  those 
rotated  by p, 270' < p < 360". Therefore, we need a 
filter consisting of rotated  filters whose angles of rotation 
are distributed between 270" and 360". The  contour levels 
of the magnitude response of that filter  have approxi- 
mately  elliptical  shapes  with  major axis oriented 315". 
We refer t,o this class of filters as elliptically  shaped 
filters. Fig. 6 shows an example of an elliptically  shaped 
filter  obtained  by cascading three second-order But,ter- 
worth  filters  rotated  by 285", 315", and 345" and cutoff 
frequency 0.2. To obtain  a  circularly  symmetric magni- 
tude response the sequence of operations  indicated in 
Fig. 5(b) is  used, where H denotes the elliptically  shaped 
filter  and R denotes  a data  rotation  by 90". Here we 
assume that  the impulse response of the elliptically 
shaped  filter becomes  negligible fast enough with  respect 
to  the dimensions of the  data. An alternative  solution  is 
shown in Fig. 5 (c) . 

The  combination shown in  Fig. 5(a) with R a  rotation 
by 90" and H an elliptical  filter is equivalent to  an ellip- 
tically  shaped  filter  with  major axis oriented 225". The 
magnitude response of this filter is shown in Fig. 7. 
Cascading the filters  in Figs. 6 and 7 we obtain  the filter 

: I  
- 1  0 h I 

Fig. 6. Contour  plot of the two-dimensional  magnitude  response 
of a cascade of three  second-order  Butterworth  filters  rotated 
285", 315", and 345". 

1 
I 01 

1 
0 

61 
-1 

-1  

Fig. 7. Contour plot of the two-dimensional  magnitude  response 
of a cascade of three  second-order  Butterworth  filters  rotated 
195", 225",  and  255". 

shown in Fig. 8. A fine detail in one quadrant of the same 
magnitude response is shown in Fig. 11. 

Figs. 9 through 11 show the magnitude responses ob- 
tained  by cascading 2,  4, and 6 rotated  filters, respec- 
tively. We observe that cascading  more than four rotated 
filters the polygonal shape of the contour levels cannot 
be appreciated.  Note also that as the number of rotated 
filters which are cascaded increases, the  attenuation also 
increases  and the cutoff region becomes steeper. 

Two-dimensional filters  with zero-phase response can 
be obtained [SI. Suppose,  for example, that  the linear 
operation  indicated in Fig. 5(d) is performed, where H 
denotes an elliptically  shaped  filter  with  major  axis 
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:1-- 
-05 0 r, 0. s 

Fig. 8. Contour  map of the two-dimensional magnitude response 
of the composite filter  formed by cascading the  two  filters whose 
magnitude responses are shown in Figs. 6 and 7. 

Fig. 9. Contour plot of the two-dimensional magnitude response 
of a cascade of two second-order Butterworth filters rotated 225" 
and 315". 

oriented 315" and R denot.es a rotation  by 90". This is 
equivalent to a cascade of an even number of rotated 
filters whose angles of rotation are uniformly distributed 
between 0" and 360". This filter has zero-phase response. 
Indeed,  its transfer function can be written  as follows: 

A 

H ( x 1 , x z )  = H(X1,x2)H(Z1-1,X2-1) 

where H ( x I , ~ ~ )  is the transfer  function of a cascade of 
rot,ated filters whose  angles of rotation are distributed 
over 180". Clearly,  t,he filter B(xl,xz) has zero-phase 
response and  its magnitude response is the square of the 
magnitude response of H (xl,zz) . 

VI. CHOICE OF FILTER  PARAMETERS 
In  the previous section it' was pointed out  that  the 

cutoff frequency and  the shape of the magnitude response 

Fig. 10. Contour plot of the two-dimensional magnitude response 
of a cascade of four second-order Butterworth filters rotated by 
multiples of 45". 

0 0.1 a2 0.3 fr, 
Fig. 11. Contour plot of the two-dimensional magnitude response 

of a cascade of six second-order Butterworth filters rotated by 
multiples of 30". 

of a two-dimensional filter depend on the number of 
rotated filters being cascaded. In  t.his scction we show 
briefly  how these  paramet'ers can be controlled. 

A. Cut#$ Frequency 
The technique used to obt,ain a two-dimensional filter 

with a specified  cutoff frequency in a given direction con- 
sists of an iteration that modifies the cutoff frequency of 
the origillal  one-dimensional continuous filter in  thc 
proper amount  and sense until  the desired  cutoff  fre- 
quency of the two-dinzensional digital filter is reached. 

This method was implemented by  writing a program in 
Fortran  IV featuring the following steps. 

1) Read in  the coefficients of the one-dimensional  con- 
tinuous filter (with cutoff angular frequency normalized 
to  unity),  the number of rotations desired, and  the de- 
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sired cutoff frequency fu of the two-dimensional digital 
filter  given  as  a  fraction of the Nyquist  frequency. 

2 )  Determine the coefficients of a two-dimensional 
digital  filter [using (1   1)  ] derived  from  a one-dimensional 
filter  with cutoff frequency fu. 

3) Find the cutoff frequency fc of the filter  obtained 
in  a given direction. 
4) Determine the coefficients of a two-dimensional 

digital  filter  derived  from  a one-dimensional filter  with 
cutoff frequency fd = 2fu - fc. 

5) Repeat  steps 3) and 4) until I fu - fc I < B where E 

is the specified maximum  error of the cutoff frequency 
in that direction. 

6) Determine the shape  factors  (see Section VI-B) . 
7) Check for  stabilit,y. 
8) Evaluate  the  magnitude response and  plot  a con- 

tour  map. 
The  program described previously was used to  design 

many  filters of different  shapes  and cutoff frequencies. 
The convergence was obtained  quickly.  The  number of 
iterations  required increases with the cutoff frequency 
and decreases with the order of the original one-dimen- 
sional filter. 

B. Xhape Factors 

Shape  factors will be used here as  a measurement of 
how  good a  filter  is. Rather  than giving large  tables of 
shape  factors for various classes of filters, we describe some 
different  kinds of shape  factors that  are suitable for two- 
dimensional digital  filters. We also give some tables con- 
taining  shape  factors of two-dimensional recursive filters 
derived from  Butterworth  filters of different orders. Since 
the shape of the magnitude response of a  filter  depends 
on the cutoff frequency, all these  tables  are given for 
filters normalized to  a cutoff frequency of 0.1. Different 
lunds of shape  factors are shown in Fig. 12. 

The  first  shape  factor is the ratio  in decibels of the 
magnitude response at  the  cutoff frequency  and the mag- 
nitude response at  a  frequency at  a  distance cl beyond 
t,he cutoff frequency in  a specified direction.  This  shape 
factor,  that we call shape  factor  number 1, is given in 
Table I1 for d = 0.05 in the directions 0" and 45". 

The second shape  factor (No. 2 )  is the distance between 
the cutoff frequency  and the frequency corresponding to 
an  attenuation of A dB.  Table I11 gives this shape  factor 
for A = 40 in the directions 0" and 45". 

The  third  shape  factor (No. 3) concerns the circular 
symmetry only and gives the  area between the -3-dB 
contour  and  a circle of radius the cutoff frequency. 
These  areas are given in  Table IV. 

The  fourth  shape  factor (NO. 4) is both  a measure of 
the steepness of the magnitude response and  a  measure 
of the circular  symmetry. It gives the volume (see  Table 
V) between the magnitude response of the filter  and the 
magnitude response of an  ideal  filter  (low-pass). The 
magnitude response of an ideal low-pass two-dimensional 
filter  in polar coordinates is 

0.707 ------ 

A l i \ $  _ _ _ _ _  L--- 

5 d  fe 

d is fixed Si = 20 log 

( 4  

3 dB ___.__ 

A OdBki dB -___--I _ _ _ _  

c d  G 

A is fixed S2 = d 

(b) 

Contour level 0.707 

Circle of r a d u  

= shaded area 

( 4  

S4 =volume 

( 4  
Fig. 12. Shape factors. 

1 1 for v < fc 

0 otherwise. 
H ( v )  = 

From the observation of the  tabulated results, the 
following general conclusions can  be  made. 

The  steepness of the filter is highly dependent on the 
number of rotated filters being cascaded, the  type of one 
dimensional filters used, and  the order of the filters.  Shape 
factors 1 and 2 indicate  the steepness of the filter, usually 
considered the main  criterion  for low-pass filters. In one 
dimension, the steepness of the filter is well known if given 
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TABLE 11 
SHAPE FACTOR NUMBER 1 (IN DECIBELS) 

-T- 

I ,  

Number o f   ro t a t ed  filters being  cascaded 

2 4  6  8 10  12 

2.80 

7.06 

12.59 

18.96 

25.78 

32.83 

39.98 

47.17 

54.38 

51.59 

1.95 

5.50 

9 .71  

14.19 

18.79 

Z3.42 

!8.06 

i2.72 

i7.37 

2.02 

d=0.05 0=0° 

3.05 3.28 3.41 

7.34 8.56 9.26 

12.75 15.56 17.54 

19.04 23.48 27.53 

25.82 31.75 38.51 

32.84 40.15 49.98 

39.98 48.60 61.67 

47.17 57.10 73.43 

54.38 65.65 85.20 

61.60 74.26 96.94 

d=O .05 0=4S0 
2.99 3.21 3.34 

7.17 8.34 9.02 

12.46 15.12 17.05 

18.61 23.05 26.76 

25.26 31.62 37.46 

32.16 40.48 48.66 

39.18 49.46 60.09 

46.25 58.44 71.60 

53.34 67.37 83.13 

60.44 76.25 94.64 

3.50 

9.77 

19.10 

30.80 

43.92 

57.72 

71.82 

86.05 

100.30 

114.53 

3.32 

9.51 

18.54 

29.91 

42.70 

56.26 

70.20 

84.32 

98.50 

112.70 

3.56 

10.15 

20.36 

33.63 

48.86 

65.15 

81.99 

99.07 

116.27 

133.49 

3.48 

9 .87  

19.74 

32.60 

47.41 

63.27 

79.70 

96.39 

113.20 

130.04 

TABLE I11 
SHAPE FACTOR NUMBER 2 

Number of   ro ta ted   f i l t e rs   be ing   cascaded  

2  4 6 8  10 1 2  

0.6532 

0.2546 

0.1392 

0.0937 

0.0702 

0.0559 

0.0465 

0.0397 

0.0346 

0.0307 

0.8898 

0.6127 

0.2800 

0.1661 

0.1149 

0.0869 

0.0696 

0.0578 

0.0494 

0.0431 

A.40 0.0' 

0.4694 0.3967 0.3545 

0.2007 0.1565 0.1371 

0.1283 0.0951 0.0845 

0.0920 0.0694 0.0614 

0.0699 0.0558 0.0486 

0.0559 0.0471 0.0405 

0.0465 0.0412 0.0349 

0.0397 0.0366 0.0308 

0.0346 0.0329 0.0277 

0.0307 0.0298 0.0253 
A=40 0=4S0 

0.5498 0.4541 0.3944 

0.2117 0.1619 0.1422 

0.1329 0.0992 0.0865 

0.0945 0.0720 0.0628 

0.0716 0.0565 0.0496 

0.0571 0.0466 0.0412 

0.0473 0.0399 0.0355 

0.0404 0.0351 0.0313 

0.0352 0.0315 0.0282 

0.0312 0.0288 0.0257 

0.3288 

0.1264 

0.0775 

0.0564 

0.0447 

0.0372 

0.0320 

0.0281 

0.0252 

0.0228 

0.3622 

0.1308 

0.0794 

0.0575 

0.0455 

0.0378 

0.0325 

0.0286 

0.0257 

0.0233 

0.3120 

0.1194 

0.0731 

0.0531 

0.0420 

0.0349 

0.0300 

0.0263 

0.0236 

0 .!I214 

0.3414 

0.1234 

0.0748 

0.0542 

0.0427 

0.0355 

0.0305 

0.0268 

0.0239 

0.0217 

Order o f  
B u t t e r w o r t h  
f i l t e r  

1 

2 

3 

4 

5 

6 

7 

8 

9 

1 0  

TABLE IV 
SHAPE FACTOR NUMBER 3 (x 10-6) 

Number o f   r o t a t e d  f i l t e rs  b e i n g   c a s c a d e d  
2  4 6 8 10 1 2  

4 .38  0.19 0.14 0.23 0 .21  0.20 

6 .02  0.32 0 . 1 4  0 . 1 4  0 . 1 6  0.16 

16.14 1 . 9 4  0 . 3 4  0.16 0 .21  0.16 

27 .15  1 . 0 9  0 . 4 0  0.12 0.32 0.97 

38.08 0 . 1 9  0 .67  0 .13  0.16 0 .21  

48 .90  1 . 7 3  1 . 0 5  0.40 0.22 . 0.37 

59.69 3.72 1 . 2 4  0.44 0.16 0.19 

70.15 5 .47  1.02 0.56 0 .37  0 .84  

81.00 7.24 1 . 0 3  0.95 0.83 0.37 

9 0 . 9 3  9 . 2 5  0.20 1.02 0 .78  0.85 

TABLE V 
SHAPE FACTOR NUMBER 4 ( X  IO-) 

Order  of 
Butterworth 

Number o f   ro t a t ed  filters being  cascaded 

f i l t e r  2  4  6  8  10  12 

1 

2 

17.65  12.09  9.98  8.92  8.31  7.93 

1.55  1.53  1.33  1.21  1.15 1.11 4 

2.34 2.24  1.86  1.71  1.62  1.56 3 

4.53  3.90  3.16  2.88  2.72  2.62 

1.15 1.14 1.03 0.94 0.89 0.86 

0.90 0.90 0.84 0.76 0.72 0.69 

0.73 0.73 0.70 0.64 0.60 0.57 

0.61 0.61 0.59 0.54 0.50 0.48 

0.51 0.51 0.50 0.46 0.42 0.40 

0.43 0.43 0.42 0.39 0.36 0.33 

the  type of filter, such as  Butterworth or Chebyshev, and 
the  order of the filter. However, in two dimensions the 
number of rotated filters being cascaded also affects the 
steepness. Tables I1 and I11 show that  the steepness of 
the ,filters is monotonically increasing with respect to  both 
the order of the filter and  the number of filter rotations. 
As a design  criDerion, the steepness of a filter increases 
more rapidly with the change of order than with the 
increase of the number of filters being cascaded. The 
effect of the number of filter rotations on steepness de- 
creases as  the number of rotations increases (the gain in 
steepness is the greatest when the filter is realized by a 
lower number of rot,ations) . 

In contrast to  the monotonic relation of shape  factors 
1 and 2, shape factor 3, which indicates the exactness of 
the realized filt,er symmetry to  the ideal circular symmetry, 
shows no simple relationship with respect to  the two 
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parameters considered. This  shape  factor  varies  in an 
erratic  manner,  although some general pattern can be 
noticed. The reason for this  variation is that shape  factor 
3 is highly dependent on the direction chosen for the 
exact cutoff frequency. A fairer comparison between 
filters could be done if shape  factors 3 and 4 were deter- 
mined with filters whose  cutoff frequency were exact in 
the optimum  direction, that is in  the direction in which 
shape  factors 3 and 4 were minimized. 

VII. CONCLUSIONS 
The work described previously concerns the design of 

stable two-dimensional recursive filters whose magnitude 
response approximates a circuiarly symmetric function. 
The principal advantages of the method  are the following. 

1) Stability can be  guaranteed. 
2 )  The method  leads to a recursive realization which 

is more efficient than a nonrecursive one. 
3) The filters are factorable into lower order filters, so 

that  they can be efficiently reaiized. In general this  factor- 
ization is not possible for two-dimensional recursive filters. 
4) The calculation of the coefficients of a filter using a 

digital computer is fast. 
Finally, we have shown  how to obtain the desired 

cutoff frequency in  a given direction with a specified 
maximum error in  that direction. We have also given 
tables of shape  factors to help the designer choosing the 
order of the original filter and  the number of rotations for 
a  particular  application. 

Future work could be done on frequency domain syn- 
thesis in order to have more control of the error from the 
ideal characteristics of the filter. In particular, a problem 
of interest is to choose a direct'ion for the exact cutoff 
frequency such that the deviation from  the  cutoff fre- 
quency in all other directions is minimized (i.e., minimize 
shape  factor  number 3, see Section VI-B) . The suitability 
of the filters discussed here for filtering images (or other 
practical  applications) could be tested. 

APPENDIX A 
The following theorems concern stability of two- 

dimensional recursive filters. 

Theorem 1 [ll] 
A two-dimensional filter is said to be stable (in  the 

sense that a bounded input produces a bounded output) 
if and only if its impulse response satisfies the constraint 

5 5 I h(m,n) I < CQ. ( A l l  
m=-m n=-m 

Theorem 2 [SI, [7] 
A causal recursive filter with transfer function 

H ( z ~ , z ~ )  = A ( ~ l , z z ) / B ( ~ l , ~ z )  
where A and B are polynomials in x1 and xz, is stable if 
and only if there are no values of ZI and z2 such that 
J3(21,22) = 0,  I x1 1 i 1 and 1x2 I 5 1. 

Theorem S [7] 
A causal recursive filter with transfer  function H (xl,xz) = 

A (21,~~) /B(21,22), where A and B are polynomials is 
stable if and only if the following. 

1) The  map of the  unit circle of the z1 plane, {xl: 
I x1 1 = 11 into  the z2 plane, according to  the equation 
B(z1,xz) = 0, lies outside the  unit disk in the x2 plane, 

2) No point in the  unit disk of the x1 plane {zl: 1 x1 1 5 11 
{22: 1 x2 I 5 I t .  

maps into  the point xz = 0 by  the relation B(xl,z2) = 0. 

Theorem 4 [7] 
Among the four recursive filters which can be associated 

with H(z1,xz) = A ( x ~ , z z ) / B ( x ~ , x ~ ) ,  that is, N(xl,z2) itself, 
H ( z I - ~ , x z ) ,  H(zl,x2-l), and H ( z ~ - ~ , ~ Z - ~ ) ,  at most one is 
stable. 

APPENDIX B 

Lemma 1 

The image of the  unit circle {zl:  I x1 1 = 1) by  a bilinear 
transformation of the  type 

where b11; b21, b12, and bz2 are  any complex constants, is 
another circle in the z2 plane of center c and  radius r 
given by 

Proof: The proof that (Bl) maps circles into circles 
can be found in  any  text on  complex variables (see for 
example [12]) and will not be included here. 

To find the center and  the radius of the circle image 
we have to determine two points X ~ A  and zlB over the 
unit circle {zl: I x1 1 = 1 ] such that their images 22A and 
Z2B are diametrically opposite (Le., maximally far  apart') 
over the circle image. Under these circumstances 

In order to see  how we choose Z ~ A  and X I B  we write ( B l )  
as follows: 
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Fig. 13. Mapping  the unit circle by the  transformation u = ht -I- b2tz1. 

where 

p = -b21/b22 

v = -bbn + (b21/b22jb12. 

The transformation (B6j can be  considered as a com- 
bination of the following transformations : 

u = biz + b 2 2 ~ 1  

2, = l/u 

22 = p + vv 
namely, the product of a similarity, an inversion, and 
another similarity. 

The similarity has  the  property of mapping  st,raight 
lines inOo straight lines and so  does the inversion u = 1/u 
for those st,raight lines  crossing the origin in  the u plane. 
Since our domain of interest is {zl: I z1 I = 1}, the points 
in  the u plane lying on a straight line crossing the origin, 
and  that, according t.0 the transformation  u = bn + &zl, 
are images of some x 1  such that j x 1  I = 1, are  the following 
(see Fig. 13) : 

UA = blz - I be2 I ( b / l  blz 1 )  (B7) 
U B  = biz + 1 b22 I (b12/1 bn 1 ) .  (B8) 

Therefore, by the transformation 

22 = - bzl/bzz - [bn - (621/b22)b12]( l / ’ l~)  

the points 22A and 22B are 

( B W  
Substituting  (B9)  and (B10) into (B4) and (B5) the 

center  and the radius are 

Corollary 

If the coefficients bll, b21, b12, and b22 of (Bl)  are defined 
by  (1 1) the center c and  the radius r of the circle  image 
are given by 

where a; = Re [( T / 2 j p i ] .  

Remarks 

Note that  the center given by  (B11) indicates Ohat it 
will always lie on the real axis. If ai + cos j3 = 0 the 
circle image becomes a straight line perpendicular to t-he 
real axis at  the point ( - 1,O). 
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Recursive  Filter  Design  Using Differential Correction 

Abstract-Recent work by Thajchayapong and  Rayner [I] demon- 
strated a technque for  designing  recursive  infinite  impulse response 
(IIR) digital  filters by linear programming. By using  an algorithm, 
described by Barrodale et al. 121, the differential  correction  algorithm, 
we will show  how one  may  obtain optimum rational approximations 
to a given magnitude-squared  frequency response  in the Chebyshev 
norm. This optimization may  be  carried  out on disjoint  sets of fre- 
quency points  obviating specification of the given magnitude-squared 
frequency response  in  transition  bands. In addition, it will be  shown 
how the differential  correction  algorithm is easily generalized  to 
include weighted  Chebyshev approximation. 

T 
INTRODUCTION 

HE DESIGN of infinite impulse response (IIR) digi- 
tal filters is inherently  a  nonlinear, complex approxi- 

mation  problem. It can be made into  a nonlinear  real 
approximation problem by considering only the magni- 
tude squared (or magnitude) of the frequency response of 
the filter and  the ideal  function which is being approxi- 
mated. One approach  has  been to  use nonlinear optimiza- 
tion  techniques to minimize the error of the approximation 
[3], [4]. Another  has been to  rest’ructure  the  problem so 
that linear  programming (a linear  optimization  technique) 
may be used to  minimize an  error  functional [l], [SI. 

In this  paper, we  will  use the differential  correction 
algorithm described by  Barrodale et al. [a] to design 
recursive  filters  with  optimum (in  the Chebyshev, or 
minimax,  sense)  magnitude-squared  frequency responses. 
In addition, we  will  show that  the optimization  may be 
carried  out over disjoint  frequency  intervals,  and that 
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weighted Chebyshev  approximation is possible with  this 
algorithm. 

For convenience, we  will use the  notation H ( w )  , rather 
than H (eju) to denote  Fourier  transforms. 

Once a  magnitude-squared  function R ( w )  = I H (  w )  l a  
has been designed, it is possible to  implement the designed 
frequency  characteristics  exactly  with no phase  distortion 
by  the following scheme. If z( n) is the  input  and h ( n )  is 
the realizable  unit sample response whose Fourier  trans- 
form  has the magnitude-squared  function R (w) , then first 
filter z ( n )  by h(n)  to get  an’ output c (n) . Then  filter 
e(  - n) by h (n )  to get an  output d ( n )  . The  sequence 
g(n) = cl( -n) will then  have  a  transform 

Y ( w )  = R ( w )  X(w). 

At  this  point  it should be noted that  a similar  tech- 
nique  can  be  applied  by designing the real  function 
2Re[G(w)] where Re  denotes “the real part of.” Again 
let z (n )  be the  input.  Let g(n) be the realizable unit 
sample response whose transform  has  a  real part equal 
to  the designed Re[G(w)]. First,  filter z ( n )  by g(n) to 
get an  output p ( n ) .  Also, filter x( -n) by g(n) to  get s ( n ) .  
Then  the sequence y (n)  = p ( n )  + s (  -n) will have  the 
desired transform 

Y ( w )  = 2Re[G(w)]X(w) 

This second technique  may  actually  be  preferable to the 
first since the two filtering  operations are done  in  parallel, 
and since the function 2Re[G(w) ] is not  constrained to 
be nonnegative whereas the function R ( w )  must be non- 
negative. 

Of course, the minimum phase  frequency response whose 
magnitude  squared  is R (w) may  be realized by  factoring 
the denominator  and  numerator polynomials, keeping the 
poles and zeros inside the  unit circle, and forming  a cas- 
cade of second-order sections, for example. 


