
Reprint 
 
J.M. Costa and A.N. Venetsanopoulos, "A group of linear spectral transformations for 
two-dimensional digital filters", IEEE Transactions on Acoustics, Speech and Signal 
Processing, Correspondence, Vol. ASSP-24, No. 5, pp. 424-425, October 1976. 
 
Copyright (c) 1976 IEEE.   Reprinted from IEEE Transactions on Acoustics, Speech and 
Signal Processing, Correspondence, Vol. ASSP-24, No. 5, pp. 424-425, October 1976. 
 
This material is posted here with permission of the IEEE.   Internal or personal use of this 
material is permitted.   However, permission to reprint/republish this material for 
advertising or promotional purposes or for creating new collective works for resale or 
redistribution must be obtained from the IEEE by sending an email message to 
 

pubs-permissions@ieee.org
 
By choosing to view this document, you agree to all provisions of the copyright laws 
protecting it. 
 

mailto:pubs-permissions@ieee.org


424 IEEE  TRANSACTIONS ON ACOUSTICS,  SPEECH, AND SIGNAL  PROCESSING,  OCTOBER 1976 

Correspondence 

A Group of Linear  Spectral  Transformations for 
Two-Dimensional  Digital Filters 

JOSE M. COSTA AND 
ANASTASIOS N. VENETSANOPOULOS 

Abstract-There are eight linear  transformations of the  spectral plane 
which  map  the  frequency  axes onto themselves.  These  transformations 
*in be used to change the pass  and stop regions of a twodimensional 
digital filter. A stable  realization is assured by transforming the  data 
rather  than the system transfer function. 

I. INTRODUCTION 
In two-dimensional recursive filter design, stability  and 

causality  are  major requirements.  In  many cases these  require- 
ments impose severe constraints  on  the filter frequency re- 
sponse  which  can  be attained. When these constraints  limit 
the geometrical shape of the pass and stop regions of the 
two-dimensional digital filter,  something can be done  to 
change that shape. Indeed, instead of modifying  the  transfer 
function of the filter,  which in  most cases would  lead to  an 
unstable  filter,  transformations of the  input and output  data 
may  result in a stable system with  the desired transfer  function. 

Some of the  transformations  that we consider have already 
been suggested in the  literature.  Indeed,  this work was moti- 
vated by  the zero-phase technique  outlined  in [ 11. Also, data 
rotations have been used in  the past [ 21 to design stable recur- 
sive filters with circularly symmetric  magnitude response. The 
purpose of this correspondence is to  give a  unified presentation 
with  emphasis on the  stable realization of the  filters  by 
equivalent data  transformations. 

Other  spectral  transformations  for two-dimensional  digital 
filters  based on a different  approach have been studied 
elsewhere [ 3 I .  

11. A GROUP OF LINEAR SPECTRAL  TRANSFORMATIONS 

Suppose that we are given a stable  and causal' two- 
dimensional recursive filter  with frequency response H(ol, w2). 
Consider all the linear transformations of the  spectral  plane 
which  map the  spectral axes onto themselves. There are eight 
possible such  transformations and they have the algebraic 
structure of a finite  group2  under  the  operation of multiplica- 
tion [4]. These transformations and their  effect  on  the fre- 
quency response of the digital  filter  are the following 
(see Fig. 1): 

(a) H(w1, w 2 )  identity 
(b) H(w2, - w l )  , clockwise 90° rotation 
(c) H(-wl,-w2) clockwise 180" rotation 
(d) H(-w2, wl) clockwise 270" rotation 
(e) N(- CJ ', w2 ) vertical mirror image 
( f )  H ( - w z , - o l )  transpose  with respect to principal 

diagonal 
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Causality for  twodimensional recursive filters is defined  in [5 1. 
21n  the algebraic  literature this group is referred to as the dihedral 

group of order 8. 
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Fig. 1. (a)-(h)  Group  of linear  spectral transformations. 

(g) H(wl ,  -a2) horizontal  mirror image 
(h) H(w2, w l )  transpose  with  respect t o  secondary 

diagonal. 

These transformations could  equivalently be defined  in the 
~ 1 ,  z2 domain by complex conjugating and/or interchanging 
the  complex variables z1 and z2  in the filter  transfer function, 
but  the  transformations are easier to visualize in  the  frequency 
domain. 

Nevertheless, among  the eight transformed  filters  only 
H(q, 02) and H(w2, wl)  are causal and  stable, because of the 
symmetry of the  stability  condition [ 1,  theorem 1 1. All other 
transformed  filters  are noncausal  and have different stability 
conditions which are incompatible  with  those of H ( o l ,  w 2 )  
and H ( o 2 ,  w1) [5 ,  theorem 21, 161; and,  therefore,  they are 
unstable. Also, it should  be noticed  that if the impulse  re- 
sponse of the  filter H(ol, w 2 )  is real, then  both H(wl, w 2 )  
and H(-wl, -a2) have the  same  magnitude response,  which is 
symmetric  with respect to  the origin, and  opposite phase 
responses. For this reason,  from H(o1,   w2)  only four  different 
magnitude responses can be derived by the  transformations 
shown. The  other  transfer  functions are  useful for filters with 
zero-phase response.  This is achieved by combining  in series 
or  in parallel two filters with  the same magnitude  response  and 
opposite phase response [ 1 1. 

There  are  two alternatives to realize the  unstable filters. The 
first is to filter the  data in a different  manner [ 1  ]  by using an 
algorithm  recursing  in another  direction. Fig. 2 shows the 
direction of recursion, sense of recursion, and  the  starting 
point  on  the  input  data  for  each of the  transformed filters. A 
horizontal  arrow  denotes a  recursion by  rows  and a  vertical 
arrow denotes a  recursion  by  columns. The head of the arrow 
points  the sense of recursion and  the base of the arrow shows 
the  starting  point. 

The second  alternative is to transform  the  data  [2].  Indeed, 
it is easily shown  that  the  system described  by (1) in the fre- 
quency  domain is equivalent to  the system  in  (2).  This  follows 
directly from  the  fact  that  the  application of a transformation 
distributes over pointwise multiplication. 

Y(w1, w2) = tTH(w1, w2)l * X(w1, 0 2 )  (1) 

where X(wl, w 2 )  and Y(o l ,  w2) are the  Fourier  transforms of 
the  input and output of the  system, respectively,  and the 
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(e) (0 (9) (h) 
Fig. 2. (a)-(h) Realization  of a transformed  filter  by  changing  the 

direction and  sense  of  recursion  of the filter  algorithm. 

transfer  function of the system is H(wl ,  w 2 )  affected by the 
transformation T ,  which  can  be any of those eight  described 
previously. In  (2)  the inverse transform is applied to  the  input 
data,  before filtering with H(wl,  0 2 ) ,  and  the  transform itself 
to  the  output  data,  after filtering.  This  process is  illustrated in 
the block  diagram of Fig. 3. This sequence of operations gives 
the desired transfer  function  and  guarantees  stability because 
the recursive filtering is done  with H ( o l ,  0 2 )  which is  stable 
by  definition. Data transformations  do  not  affect  stability 
because if a filter is stable  it will be stable no  matter  what  the 
(bounded)  input is. Also, the  data  transformations  in Fig. 3 
affect neither  the  linearity  nor  the space-invariance of the 
system. 

The  system  (2)  shown  in Fig. 3 is best realized in the space 
domain. The  transformations are easily applied to the  data 
which are given in  the  form of a matrix  and  they can be  done 
in  place if the  matrix is square. Here we use the  property  that 
a orthogonal change of coordinates  in  the space domain results 
in  the same  change of coordinates  in  the  frequency  domain [ 71. 

Systems like  that  in Fig. 3 can be cascaded to  obtain a system 
with zero phase or  other useful  symmetries. In  this case it 
should be noted  that whenever two  transformations are con- 
tiguous they can be combined  together in a single transforma- 
tion because the  set of transformations  form a group  under  the 
operation of multiplication. A multiplication  table  for  these 
transformations is given in [ 4 I .  

One final  remark  about  the use of these techniques is that 
not  only a filter  must be stable,  but also the  filter  output  array 
must be large enough, so that  the  effect of truncating  the  filter 
output is negligible. 

111.  CONCLUSIONS 
A group of linear spectral  transformations  for two-dimensional 

digital filters  has been presented.  There  are  eight  transforma- 
tions which permit changing the pass and stop regions of a 
two-dimensional  digital  filter. Since in most cases the trans- 
formed filter  would  be unstable,  an equivalent stable  system 
has  been proposed which transforms  the  data  rather  than  the 
system transfer  function.  The principal applications of these 
transformations  exist when filters  with  zero phase or  ‘other 
useful symmetries  are required. 
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A Correct Proof of Huang’s Theorem on Stability 

DANIEL L. DAVIS 

Abstruct-A correct  proof  of Huang’s theorem  on the stability of 
twodimensional causal  recursive  digital filters is developed  using a 
maximum  modulus  theorem for algebraic functions. 

I. INTRODUCTION 
Huang [41 has stated  the following  result  concerning the 

stability of two-dimensional  causal, recursive digital  filters. 

Theorem 1 

A causal filter  with a z transform 

H(zl, z 2 )  = A ( Z 1 ,  z2)/B(z1, z2) 
where A and B are polynomials is stable if and only if: 

1)  the map of ad1 = (~111 z1 I = 1) in the z2 plane,  accord- 
ing to  the  relation B(z1, z 2 )  = 0, lies outside d2 = 

{ z ~ I I z ~ I  < 1);and 
2)  no  point in d l  = (z1 IIz1 I < 1) maps into  the  point 

2 2  = 0 by  the  relation B(z1, z2) = 0. 

The  method used by Huang to prove  this  result is to  attempt 
to show  that  conditions  1) and 2) are equivalent to  the 
condition 

which is known to be  a  necessary and  sufficient  condition  for 
stability [4]. In a subsequent  paper, Jury and Anderson [ 11 
observe correctly  that  1)  and  2) are  equivalent t o  

1’) B(zl,O)#O i f l z l l < l  
2‘) B ( Z ~ , Z ~ ) # O  i f ~ z l ~ = 1 , ~ ’ z 2 ~ < 1 .  

(1.2) 

Thus, in  order to prove Theorem  1,  it is necessary to  show  that 
conditions  (1.2) are  equivalent to condition (1.1). Clearly 
condition  (1.1) implies conditions  (1.2). Moreover, it is not 
difficult to see that  conditions  (1.2)  imply  condition  (1.1) if 
they  imply  the  condition 
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