
Reprint 
 
S.H. Mneney, A.N. Venetsanopoulos and J.M. Costa, "The effects of quantization errors 
on rotated filters", IEEE Transactions on Circuits and Systems, Vol. CAS-28, No. 10, pp. 
995-1003, October 1981. 

and 

S.H. Mneney, A.N. Venetsanopoulos and J.M. Costa, “Correction to ‘The effects of 
quantization errors on rotated filters’", IEEE Transactions on Circuits and Systems, 
Vol. CAS-29, No. 9, p. 648, September 1982. 
 
 
Copyright (c) 1981 IEEE.   Reprinted from IEEE Transactions on Circuits and Systems, 
Vol. CAS-28, No. 10, pp. 995-1003, October 1981, and Vol. CAS-29, No. 9, p. 648, 
September 1982. 
 
This material is posted here with permission of the IEEE.   Internal or personal use of this 
material is permitted.   However, permission to reprint/republish this material for 
advertising or promotional purposes or for creating new collective works for resale or 
redistribution must be obtained from the IEEE by sending an email message to 
 

pubs-permissions@ieee.org
 
By choosing to view this document, you agree to all provisions of the copyright laws 
protecting it. 
 

mailto:pubs-permissions@ieee.org


IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, VOL. CAS-28, NO. 10, OCTOBER 1981 995 

The Effects of Quantization Errors on 
Rotated Filters 

STANLEY H. MNENEY, ANASTASIOS N. VENETSANOPOULOS, SENIOR MEMBER, IEEE, 
AND JOSE M. COSTA, MEMBER, IEEE 

Abstract-A digital filter that has been designed by rotation of the 
frequency response of a one-dimensional continuous filter, and then bilin- 
early transformed into a two-dimensional digital filter is called a rotated 
filter. Other useful filters such as circularly symmetric low-pass, high-pass, 
or bandpass filters can be obtained by parallel or cascade connection of 
rotated filters. These filters can be used in image processing and geo- 
physics. 

Rotated filters are marginally stable if the rotation angle /Zl satisfies 
270” <p<360”, when designed from a stable one-dimensional continuous 
filter. A slight change in the coefficients has a significant effect on the 
stability of rotated filters. In this paper, the effects of quantization errors 
on the stability of rotated filters are investigated. A method to predict the 
stability state of rotated filters after coefficient quantization is given. A 
coefficient perturbation technique is discussed and used to stabilize a filter 
if found to be unstable. 

For real coefficients, a region of guaranteed stability is defined for some 
forms of fixed-point and floating-point arithmetic. The effects of coeffi- 
cient quantization and coefficient perturbation on the frequency response 
also are discussed. 

I. INTRODUCTION 

R OTATED FILTERS are designed by rotation of the 
transfer function of a stable one-dimensional continu- 

ous filter into a two-dimensional continuous filter, which is 
bilinearly transformed to form a two-dimensional digital 
filter [ 11. These filters are marginally stable in the rotation 
angle /3, where 270” < /3 < 360”. Coefficient quantization 
affects both the frequency response and the stability of the 
filters. The effects of coefficient quantization on the 
frequency response of one-dimensional digital filters are 
discussed in [2] and [3]. The statistics of the errors at the 
output of two-dimensional digital filters are given in [4]. 
For rotated filters a slight change in the coefficients is 
expected to have a significant effect on their stability. In 
this paper, a method to predict the stability of rotated 
filters after coefficient quantization is presented. If unsta- 
ble, the filters may be stabilized using the perturbation 
technique proposed in [ 11. In fixed-point arithmetic, where 
sign-and-magnitude or one’s complement representation is 
used, the region 27O”<p, </3<& <360”, is one in which 
the truncation errors will result in the stabilization of the 
filters. Here cos p, + sin p, +pi( T/2) = 0, - cos & - sin & 
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+pi(7’/2)=0, and p, is real. pi is a pole in the one- 
dimensional continuous filter and T is the sampling inter- 
val. For floating-point arithmetic an identical region is 
defined, under the condition that the mantissa of the 
floating-point number has a two’s complement representa- 
tion. I 

The stability analysis for rotated filters is developed 
from the basic stability theorems quoted in Section II, 
which apply to two-dimensional digital filters in general. 
The design of rotated filters is summarized in Section III, 
and the regions of marginal stability are defined for an 
ideal filter. In Section IV, quantization error effects are 
investigated for fixed-point arithmetic, and in Section V, 
for floating-point arithmetic. The perturbation technique is 
discussed and applied to stabilize an unstable filter in 
Section VI. The effects of coefficient quantization and 
coefficient perturbation on the transfer function also are 
discussed. 

II. STABILITY OF SECOND-ORDER 
TWO-DIMENSIONAL DIGITAL FILTERS 

The transfer function of a two-dimensional digital filter 
is given by 

ff(z,, z2)= 
4z14 
B(z,,zz) M/J WI (1) 

z 2 biiz;-‘z{-’ 
i=l j=I _  

where b,, = 1; z, and z2 are unit delay operators; aij and bij 
are filter coefficients. A(z,, z2) and B(z,, z2) are mutually 
prime polynomials in z, and z2. The filter is said to be 
Bounded Input Bounded Output (BIBO) stable if the im- 
pulse response is absolutely summable [5]. A number of 
stability theorems have been developed to express this 
stability condition in terms of the filter coefficients. Two of 
these theorems are quoted here as a necessary background 
in the stability analysis of rotated filters. 

Theorem 1 
A causal recursive filter with transfer function H(z,, z2) 

=A(z,, z*)/B(z,, z2) where A and B are polynomials in z, 
and z2, is stable iff there are no values of zt and z2 such 
that B(zl,z2)=0, (z,]~l, and ]z,]Gl. This theorem is 
given in [5] and a modification is discussed in [6]. 

’ Theorem 1. implies that the mapping of the unit disk 
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]z, ] G 1 by the transformation B( z,, z2) = 0 should not over- 
lap with the unit disk Izz ] G 1 in the zz plane. This mapping 
requires considerable computation and simplifications are 
developed in [6] and [7]. 

Theorem 2 
A causal recursive filter with transfer function H(z,, z2) 

=A(z,, zz)/B(z,, z2) where A and B are polynomials in z, 
and zz is stable iff 

a) The map of the unit circle of the z, plane {z,; Iz, I = l} 
into the z2 plane according to the equation B(z,, z2)=0 
lies outside the unit disk {zZ; lz2 1~ l}. 
,b) No point in the unit disk from the z, plane {zi; 1 z, I 
d l} maps into z2 = 0 by the relationship B(z,, z2)=0. 
Stability analysis for direct form higher order filters is 

unwieldy, since it involves a large number of coefficients. 
Design is usually limited to first- and second-order filters, 
which can be combined in parallel or in cascade. For a 
second-order filter the mapping B( z,, z2) = 0, with complex 
coefficients in general, becomes a bilinear transformation; 
which maps circles into circles. Straight lines are circles 
with infinite radius [8]. In the case where the center of the 
mapped circle remains on the real axis, the points A,* and 
Bz, mapped from A,, k- 1 and B,, A+ 1, are sufficient to 
determine the filter stability. Here 

B(z,,z,)=O 
A,/ -1 * b, 1 -b*, 

maps onto Az~= - b,, -b,, (24 

B(z,, zd=O 
B,+ +l * b,, +b*, 

maps onto Bz2= - b,, +b,, (2b) 

and the center of the mapping is given in Appendix B of [l] 
as 

c = b,,b,*, -b,,G 

z2. Ib,*12-lb2212~ 

Hence, -the following condition has to be satisfied: 

Im(b,,b%)=Im(b,,b;,) 

for the center to lie on the real axis. 

(2c) 

III. ROTATEDFILTERS 

Two techniques have been suggested for the design of 
rotated filters. The first approach was based on design of 
two-dimensional digital filters from one-dimensional con- 
tinuous filters [l]. A perturbation technique was proposed 
as a method to stabilize the otherwise marginally stable 
filters.’ A second method entailed the design of two- 
dimensional digital filters starting from one-dimensional 
discrete filters [9]. An optimization technique was adopted 
to produce filters with better stability properties. The coef- 
ficients were computed by means of nonlinear program- 
ming, subject to the stability constraints imposed on the 
coefficients. In general, rotated filters are marginally stable 

‘Some authors use the term “marginally unstable.” The two cases arc 
equivalent and the impulse response will neither decay nor grow without 
bound. This condition is caused by the fact that rotated filters have a 
nonessential singularity of the second kind on the boundary of the unit 
bidisk, and no other singularities on the bidisk. 

regardless of the design procedure. Only the first method is 
summarized for later application. 

i) Design a stable one-dimensional continuous filter with 
a transfer function given by 

m 

Jl Cs+4i) 
H(s)=H, ;;I . (3) 

;g (s+Pi) 

If Re( pi)>O, then the pole s= -pi is in the left-hand 
plane of the s-plane and the filter is stable. 

ii) Rotate H(s) into a two-dimensional continuous filter 
by the transformation 

s= -s;sin/3+s;cos/3. 

This gives a rotated filter with a transfer function 

i [(sicosp-s;sin/3)+qi] 
H,(&s;)=H, it’ . (4) 

,n, [( s;cosp-s;sinp)+p,] 

iii) Apply a double bilinear transformation 

where T is the sampling interval, assumed to be the same in 
each direction. This gives a two;dimensional digital filter 
with a transfer function 

b-f (u;, +a;,z, +a’;,z, +a:,z,z,) 
fqz,, z*)=ff, l-I 

i=l (br, +bi,t, +b’,,z, +b&Z,Z2) (5) 

where 

u’;, =cosp--sinp+qiT/2 

U i, =cosp+sin/3+qjT/2 
1 <i<m 

U i2 = -cosp--sinP+q,T/2 ’ 
ui _ 

22 - - cos /3 + sin p + qiT/2 

a;, =u;, =a;* =a;* = 1, m<iGM 

b’,, =cosp-sin/3+piT/2 1 
’ (6) 

b& =cos/?+ sin j3+piT/2 

bi2 = -cosp-sin/?+piT/2 ’ 
1 <i<n 

bi2 = - cos j3 + sin p +piT/2 1 ’ 
b;, =b;, =bi,2 =bi2 = 1, n<iGM. 

H, constant 

Mfimax(m, n). 

iv) The required cutoff frequency is obtained by shifting 
the positions of pi and qi iteratively. 

Stability of rotated filters can now be determined in 
terms of the cutoff frequency and the rotation angle. For 
the second-order rotated filter the points AZ*, Bz2, and CZ, 
in (2) can be written in terms of the rotation angles using 
(6); refer to Fig. 1. 
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Fig. 1. Mapping that guarantees marginal stability. 

Bzz= - 
i 

cosj3+piT/2 
- cos /3 +piT/2 

Re ( UP) 
cosj3+Re(piT/2) 

The bilinear transformation B( z,, z2) = 0 maps circles onto 
circles. The point Bf2 lies anywhere on the circle with 
center CL,, since this 1s a mapping of B,, = 1, which lies on 
the unit circle in the z, plane. The point A,* 5 - 1 is 
invariant irrespective of the rotation angle. The mapping of 
the unit circle from the z, -plane by the bilinear transforma- 
tion B(z,, z2)=0 has a common point at A,>= - 1, with 
the unit circle in the z,-plane. This is the reason why at 
best rotated filters are marginally stable. CZ, is always on 
the real axis. Theorem 2, as applied to rotated filters, can 
be simplified further. A filter is stable iff 

(74 

(7b) 

(74 

997 

Equation (8a) and (8b) are obtained by substituting (7a), 
(7b), and (6) in conditions ii) and iii). 

Rotated filters are marginally stable if conditions (8a) 
and (8b) are satisfied. (8a) and (8b) are satisfied for 
Re( piT/2)>0 and 270”</3~360”. This condition implies 
that when the design of the rotated filter starts from a 
stable one-dimensional continuous filter, the rotation angle 
should be between 270” and 360” for marginal stability. It 
can also be noted that (8a) and (8b) are satisfied for 
Re( piT/2)C0 and 9O”<p< 180”. If the design starts from 
a single pole filter, with a pole on the right-hand plane, a 
stable two-dimensional filter can be obtained for an angle 
which is between 90” and 180”. 

IV. EFFECTS OF QUANTIZATION ERRORS ON 
STABILITY 

In implementation of digital filters the coefficients are 
stored with finite precision. There is a quantization error 
associated with each coefficient. Let (Y~, and pij be two 
quantization errors of the coefficients of (1) and Zij and kj 
be the quantized coefficients such that 

Zlj =uij +aij 

kj =bij +pij , i = 1,2, j = 1,2 for a second-order filter 

(10) 
for fixed-point arithmetic. The constants Zij, hj, uij, b,,, 
aij, and Pij are complex in general. Quantization of the 
coefficients changes the positions of the poles and zeros 
from the desired locations. For rotated filters a slight 
change in the coefficients is sufficient to change the sta- 
bility status of the filter. For second-order filters the trans- 
formation B< z,, z2) = 0 is still bilinear.* The points B,, = + 1 
and A,, = - 1 in the z,-plane will be mapped to new 
positions such that 

&(z,, z*)=o 
X+-l * 

maps onto 01) 

B(z,, z*)=o 
B,=+1 * 

maps onto (12) 
i) AL2, Cz, are real 
ii> IBZ21>1421>1 

iii) 1 b,,/b,, I> 1; no point inside the unit circle in the 
z,-plane is mapped on the point z2 =O in the z2- 
plane. 

For rotated filters condition i) is always true. In ii) equality 
holds for I ALI I = 1. This imposes a condition of marginal 
stability. For the other part of ii) an angle has to be 
determined for which 

(84 

For a complex coefficient the real and imaginary parts are 
each truncated separately. For rounding Im( pij) and 
Re( pij) vary from -q/2 to q/2, while their magnitudes 
vary from 0 to q, for truncation. The quantity q is the 
quantization interval and is equal to 2-I, where I is the 
selected register length. The point xZZ is the most critical 
point ‘in the stability analysis after quantization of the 
coefficients. xZZ can be written as 

1 =- 1+Pl,-P*l-&2+P22 
22 

i -2smp+p,, 1 -P22 . 
(13) 

and from iii) an angle has to be determined for which 

co~p--sinP+piT/2 , 1 
cosp+sinP+pii”/2 ’ (8b) 

Since b,, = 1.0 due to normalization of coefficients /?, , =O. 

*A bar on top of a quantity implies finite register lengths are used. 
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t 

Fig. 2. Coefficients of rotated filters withp; real and 270”<~<360”. 

Let 

rkk -I321 -42 +I322 

-2sinP+P12 -P2* (14) 
then 

A,>=-(1+c). 

The stability parameter c is a complex random variable. 
When Re[c]<O, the transformation B(z,, z,)=O does not 
cause an overlap of the mapping of the z,-plane unit circle 
into the z,-plane unit circle. The resulting filter is, there- 
fore, stable. When Re[ c]>O the filter is unstable. The 
parameter E can be used to determine the stability status of 
the filter. 

It is known [2] that for sign and magnitude representa- 
tion and one’s complement representation in fixed-point 
arithmetic, the truncation error is negative for positive 
numbers and positive for negative numbers. For real pi the 
coefficients of a rotated filter have the characteristics shown 
in Fig. 2 in the region of marginal stability. The character- 
istics are summarized below for real piT/2>0 and 270” CD 
(360”. 

Region A 
b,, = 1.0 
b2, (0 
b,* ‘0 

b22 (0 

Region B 
b,, = 1.0 
b2, ‘0 
42 ‘0 

b22 (0 

0" 

o$:-sin/31+P,T/2=0 

cos~,+sin~,tP,T/2=0 
270” 

Fig. 3. Stability region of rotated filters with real coefficients. 

TABLE I 
THE COEFFICIENTSOFROTATEDFILTERS 

. 
8 285’ 315' 349 195. 225. 255. 

Yl 1.2427902 1.2173309 1.2427893 -0.249005, 2.0000029 1.3570623 

=12 0.9227570 0.4346644 0.0484048 -6.3933916 5.6012859 1.8277283 

O21 0.0484031 0.4346620 0.9227546 1.3973694 -1.601270, -0.3994782 

O22 -0.2716300 -0.3480055 -0.2716304 -4.7410169 2.0000124 0.0711879 

aThese filters are unstable. 

121, a region of guaranteed stability does not exist. A 
similar problem arises when rounding error is considered. 
Given the register length, the quantization errors on the 

Region C 
b,, = 1.0 
b2, ‘0 

~A = -IP211+l&*l+I~221 sinpzO 
-2sinp 

~B= IP211+I&*l+I~221 
-2sinj3 sinP#O. cc = IP211-IP121+18221 sinPzO 

-2sinp 

Here sinp is much greater than /3,* -p2*, since /3,* and /3** 
are quantization errors which have small values in practice. 
It is seen that r,>O and hence the filter is stable for 
j3, </3<p2, where cos/3, +sinp, +piT/2=0 and -cosp, 
-sin p2 +piT/2 = 0, as shown in Fig. 3. 

For real pi(T/2)<0 the region of marginal stability is 
90” <PC 180’. It can similarly be shown that in this region 
the stability parameters Ed, ~a, and cc are not guaranteed 
to be positive. 

For two’s complement representation, where the errors 
for both positive and negative numbers are always negative 

coefficients can be computed exactly. It is, therefore, possi- 
ble to test the sign of the stability parameter on each 
design, and especially in the range where the filter stability 
is not guaranteed. 

Table I contains a set of coefficients for filters designed 
from a stable one-dimensional continuous filter, as in 
Section III, for certain rotation angles /3. Tables II and III 
give the truncation errors for various register lengths and 
compute the stability parameter c for sign-and-magnitude 
representation of fixed-point arithmetic. The region of 
guaranteed stability is 289”</3<341’. It is clear from 
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TABLE II 
COEFFICIENTQUANTIZATIONERRORSATP=~~~~ 

-7 2.15x10-’ 1.62x10 -7 2.58819X10 -7 
E *.,x10 1.553x10 -7 

TABLE III 
COEFFICIENTQUANTIZATIONERRORSAT/~=~~~~ 

E 1.58 0.4418 -2 4.410x10 1.333x10-' 8.655x1o-5 

Table III that filters designed with the rotation angle 315” 
and p,T/2=0.62 fall in the region of guaranteed stability, 
since Re[c]>O. For /3=285“, Re[c]>O, but smaller than 
the least significant digit of the coefficients. In this case E 
cannot be taken as a reliable stability sensor, since the 
arithmetic computation of c does not guarantee an accu- 
racy greater than that in which the coefficients are given. 
In such cases the filter coefficients should be perturbed to 
guarantee stability. This technique is discussed in Section 
VI. 

V. FILTERSIMPLEMENTEDUSING FLOATING-POINT 
ARITHMETIC 

Floating-point numbers are of the form 2”.b [6]. The 
exponent a is an integer in binary form. The variable b is 
the mantissa and is between l/2 and 1. The variables a 
and b are represented with limited wordlength, introducing 
quantization errors. A real number v is approximated by 

the number v, in floating-point arithmetic. Thus v, = v( 1 + 
k), where k is the truncation or rounding error. Both 
addition and multiplication in floating-point arithmetic 
introduce errors. The sum (v, + vz)( = (v, + vz)( 1 + p) and 
the product (v,~v~)~=(v,~v~)(~+~), where p and 6 are 
quantization errors. 

The second-order two-dimensional digital filter with in- 
finite precision arithmetic has a recursive equation given by 

Y nm = $ i aijx’n-i+l,m-j+l- i i bijYn-i+l,m-j+I* 
izzl j=l i=l j=l 

i+j#2 

Let aij and pij be the errors introduced in approximating 
the coefficients aij and bij by the floating-point numbers. If 
fl( .) denotes floating-point arithmetic the recursion equa- 
tion can be written as 

r 

&I =fl 

i 

i i aij(l+“ij)Xn-i+I,m-j+l 
i=l j=l 

1 

- $I 5  bij(l+Pij)y,-i+I,,-j+, . (16) 
i=, j=I 

i+j#2 J 

The order of computation of (16) is such that the -products 
aijtl+Pij)X,-,+1,,-j+, and bi,tl+Pij)y,-i+,,,-j+, are 
performed first. The sums are then performed and finally 
the difference to give Y,,. The computation order and the 
errors introduced are summarized in the flow chart of 
Fig. 4: where 

aij and pij i, j= 1,2 are coefficient quantization er- 
rors; 

aij and Aij i, j= 1,2 are errors due to multiplication; 
& and ci i = 1,2 are errors due to addition. 

Let 

e,,=1 

The random variables (Y, 6, 5, k, p, A, and E are quantiza- 
tion errors, which vary from (- 2-‘/2) to (2-‘/2) for round- 
ing, while their magnitudes vary from 0 to 2-’ for trunca- 
tion. The register length is given by 1. The products and 
squares of these random variables are negligible compared 
to the values themselves. The following approximations are 
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Fig. 4. Computation order for a recursive filter using floating-point 
arithmetic. 

thus useful: 

6, - 1 +K,, = 1 +a,, +a,,, +E, +52 +& +k 

G2, - 1 +K,, = l+az, +L,, +E, +t2 +E3 +k 
G12 = 1 +K,, = 1 +q2 +S,,,-, +t2 +& +k 

+22=1+K22=1+~22+6,-,,,-,+[2+k 

and 

e,, = i.o+~,, L,, =o.o 

e,,~1+~2,=1+~2,+i4,-,,,+~,+E2+k 
e12 = l+L,, = 1 +p12 +A,,,:, +E, +c, +k 

b’,, - 1 +L,, = 1 +j322 +A,-,,,-, +c, +k. 

Thus (16) can be written as 

Ynm = 5: E Qij(l+Kij)xn-i+l,m-j+l 
izzl j=l 

- i E b;j(l+Lij)Yn-i+l,m-j+l. (17) 
i=l j=I 

i+j#2 

The z-transform of the transfer function is given by 

5 5 az,(l+Kij>Z; ‘2 
r-l j-l 

jqz,, z2)= ‘;I ‘;I 

2 2 bij( 1 +Lij)z;-,z;-, ’ 
(18) 

;=I j=, 

Let Zij =aij(l +K,,) and hj =bij(l +Lij), then 

,i i: ajjz;-‘z:-’ 

jQz,, z2)= 1;’ j;’ 

2 2 &jz;-b-’ * 
(19 

i=l j=I 

Stability Theorems 1 and 2 still hold. The points A,, and 
EZ2 are mapped onto different points by a transformation 
B(z,, z2)=0. The invariant point A,, =A=*= - 1 is now 
given by 

b,,(l+L,,)--b,,(l+L,,) 
b,,(l+L,,)-bb,,(l+L,,) 

which after some algebra becomes 

-L,,b,, -L,,b,, +L,,b,, 1 -2sinP+L,,b,, -L,,b,, ’ (20) 

AZZ is of the form 

AZz=-(l+E) 

where 

E= -J52,b2, -L,2b,2 -+L22b22 
-2sin/3+L,,b,,-L,,b,, (21) 

and if Re(c)>O the filter is stable and if Re(r)<O the 
filter is unstable. 

For floating-point arithmetic the mantissa can be repre- 
sented using sign-and-magnitude, one’s complement or 
two’s complement representation [lo]. Many machines use 
two’s complement representation for the mantissa. In such 
a case [6] demonstrates that the errors are always negative. 
Using Fig. 2 for real piT/2>0 

Region A 

L2, (0 
Ll2 (0 
L22 (0 

b2, (0 -L2,b2, <o 
bl2 >o -J5,2b,2 ‘0 
b22 (0 L&2 ‘0 

E . A= 
-l~2,~2~1+I~,2~l2l+I~22~22I 

]2sinP] sinp#O. 

Region B 

L2, (0 b2, ‘0 -L2,b21’0 
Ll2 (0 bl2 ‘0 -L,,b,, ‘0 
L22 <O b22 (0 L22b22 ‘0 

z _ IL2lb2lI+ILl2bl2I+I~22b22I >o 
B- 12 sin PI 

sin/?#O. 

Region C 

J52, -=o b2, ‘0 -L2,b2, ‘0 
Ll2 (0 .b,, (0 -w+2 (0 
L22 (0 b22 (0 L22b22 ‘0 

E _ I~~~~21l-I~12~12I+I~22~22I 
C- 12 sin p] sinj?#O. 
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In Region B, eB >O and the filter is guaranteed to be 
stable. In Regions A and C the filter may be unstable. 
Region B is bounded by /3, <PC&, where cosp, +sinp, 
+piT/2=0 and -cos& -sin& +piT/2=0. When piT/2 
<0 there is no region of guaranteed stability. The depar- 
ture from the symmetry is due to the coefficient normaliza- 
tion factor b, ,, which is now a negative quantity. This 
factor is positive for piT/2>0. Region B is a function of 
the pole position in the one-dimensional continuous filter 
and the desired cutoff frequency. It is easy to see that for 
piT/2=0, Region B is minimum. This region is maximum 
for piT/2= 1. 

It is possible to stabilize rotated filters that are found to 
be unstable by perturbing the coefficients. Not all coeffi- 
cients need be perturbed and the choice depends on the 
approach taken. The basis of this stabilization technique is 
given below. 

A marginally stable filter is destabilized by the quantiza- 
tion error such that - A,*= _ fy-51 (- I B-1. 

b,2 -b22 
(23) 

In this case the mapping of the unit circle from the 
- z, -plane onto the zz -plane overlaps with the unit circle on 

the z,-plane. In this case Re(e)<O. Re(e) is given by (14). 
After quantization equality can be retained if Re(e) is 
subtracted from the right-hand side of (23): 

= -(l+Re(e)). (24) 

This “shrinking” of the unit circle retains the original 
condition of marginal stability as before quantization. The 
unit circle on the z,-plane is hypothetically shrunk by 
Re(r), until it just touches the mapping of the unit circle 
from the z,-plane onto the z,-plane. For stability the two 
circles should not touch but have a gap of 6 between them. 
Thus 

<--(l+Re(e)+6). (25) 

Let 

p=Re(e)+& 

<-(1+p). (26) 

Different approaches of stabilizing a rotated filter are 
now given: 

i) Divide the inequality (26) by (1 +p) to give 
I- -1 

AZ*= - -h,-b2,.l 

bdl+d--b22(1+,4 
c-1 (27) 

by perturbing the coefficients c,2 and b22 to G,2 = 
b,*( 1 +p) and b;, =b,,( 1 +p), inequality (27) is 
guaranteed and the filter is stabilized. 

ii) Add p to both sides of inequality (26) 

kZ2=~z*+p= -(L-L> 
(62 42,) 

+PL<-1 (28) 

by perturbing &, , and b,, to g,, =b,, ---~g,~ and 
62, =&, -p&2, inequality (28) is guaranteed and the 
filter is stabilized. 

iii) By perturbing b, , and b2, to 6, , = b,, - pLb,, +pb,, 
and b;, =&,, inequality (28) is guaranteed and the 
filter is stabilized. 

iv) By perturbing b,, and b,, such that 6,, =b,, and 
b;, =&, +&, 422, inequality (28) is guaranteed 
and the filter is stabilized. 

The preferred approach is the one which produces the least 
distortion in the frequency response. The value of the 
derivative of the frequency response with respect to a 
coefficient is a measure of the sensitivity of the frequency 
response to changes in the values of the filter coefficients. 
The coefficients corresponding to the lowest sensitivity are 
perturbed. From (1) the coefficient sensitivities of the 
second-order filter with M, = N, = M6 = Nb = 2 are 

dH dH -=M, - dH 
4, db2, 

=Me-iwl - 
’ db,2 

= Me -iw 

dH 
- =Me-J(“+“d 

db22 

where 

M= _ Ia,, +u2,e-jwI +a,,e-jw2+a e-j(w1+w2)I 

lb,, +b2,e 
-jW, +blze-J”2 +b2;e-/‘v~+“d/2 ’ 

The distortion produced by b,, decays faster than that 
produced by b,, or b,,. A preferred technique should 
perturb a minimum number of coefficients chosen in the 
order b22, b2,, and b,,. The coefficient b,, is not perturbed 
since it is defined to equal 1.0. 

Example: For a filter of rotation angle 285” and quan- 
tized coefficients as follows: 

b,, = 1.0 and error p,, = 0.0 
b2, = 0.0 fi2, = 0.194 
K,*= 1.0 /3,2 = -0.180 
b,, = -0.5 p22 = 0.0144. 

From (24), Re(e)= -0.333. The filter is unstable. Choose 
a 6 small. Let 6= lO/lOO, e= -0.0333, hence p= -0.3663. 

The choice of the perturbation method is obviously 
between i) and ii). However, i) is preferred to ii) since the 
frequency response is least sensitive to a perturbation on 
b,,. The new coefficients by this technique are 

6,, =b,,(1+~)=0.6337 

K2,, =b,,( 1 +p) = -0.31685 

kZ2=-- ‘,,-G, =-1.052.=-l 
62 - 622 

and hence the filter is now stable. Since coefficient per- 
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Fig. 5. Frequency response of a two-dimensional digital filter with: 1) 
exact coefficients (register length used = 32), 2) peak magnitude= 1.000, 
3) cutoff frequency=O.OS. 

Fig. 6. Frequency response of a two-dimensional digital filter with: 1) 
register length= 16, 2) peak magnitude= 1.007, 3) cutoff frequency= 
0.08. 

turbation adds distortion to the filter frequency response, 
perturbations should be kept small. 

Fig. 5 shows the frequency response of a filter composed 
of six low-pass second-order rotated filters cascaded. The 
rotation angles of the transfer functions are 195”, 225“, 
255”, 285”, 315”, and 345”. The first three filters are in the 
region of instability and cannot be stabilized by the meth- 
ods discussed above. In this case the input is rotated by 
90° in the clockwise direction. A filter with a frequency 
response rotated by 90” in the counterclockwise direction 
from the unstable filter is used. The filter is now in the 

Fig. 7. Frequency response of a two-dimensional digital filter with: 1) 
register length=6,2) peak magnitude= 1.243,3) cutoff frequency=O.lO. 

Fig. 8. Frequency response of two-dimensional digital filter with: 1) 
register length=4, 2) peak magnitude=0.598, 3) 3-dB cutoff frequency 
is very small. 

stable region. The output is finally rotated 90” in the 
counterclockwise direction. This process is equivalent to 
that of using a filter with a frequency response in the 
required direction. The technique is discussed in detail in 
[ 111. The filter shown in Fig. 5 has exact coefficients.3 Figs. 
6-8 show the frequency responses obtained by quantizing 
these coefficients to register lengths of 16, 6, and 4 bits,. 
respectively. Distortions appear in the passband as a change 

3For exact coefficients the register length used was 32. No additional 
noticeable improvement is obtained on the transfer function by using 
longer register lengths. 
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in the magnitude and desired cutoff frequency. Distortions 
also appear as ripples in the stopband. As expected, the 
distortion increases with a decrease in register length. 

VII. CONCLUSIONS 

The proposed procedure for the design of rotated filters 
is summarized. 
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9 

ii) 

iii) For regions outside this zone of guaranteed stability 
but within the fourth quadrant compute the stability 
parameter e. If Re(e)>O the filter is stable. If Re(e) 
(0 the filter is unstable and the perturbation tech- 
nique is employed to stabilize the filter. 

It is more laborious to compute e when floating-point 
arithmetic is used, however, the filter can be designed 
inside the region of guaranteed stability, which is easily 
computed as in ii). Coefficient quantization distorts the 
transfer function. The distortion increases as the register 
length is reduced. As observed in Figs. 6-8, there is a 
change in the magnitude response in the passband, a shift 
of the cutoff frequency and an increase in the ripples in the 
stopband. It should be noted that excessively short register 
lengths may produce a filter with a completely different 
transfer function. The amount of tolerable distortion de- 
pends on the designer’s requirements. 

Design a marginally stable rotated filter by the 
method described in [ 11. 
For the special cases discussed in Section V, find the 
region of guaranteed stability. This region is given by 
{/?;27O”cp, cB<& <360”}, where cosp, +sin/?, 
+piT/2 = 0 and - cos & - sin j3, +piT/2 = 0, where 
p, is the real pole of the one-dimensional continuous 
filter. 

[II 

121 

131 

[41 

151 

[61 

171 

PI 

[91 

[lOI 
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Topic 

Correction to “The Effects of Quantization Errors on 
Rotated Filters” 

STANLEY H. MNENEY, ANAsTASIOS N. VENETSANOPOULOS, 
AND JOSE M. COSTA 

In the above paper’ we found a misprint. In the paragraph 
following (14) page 998, the signs > and < are exchanged. This 
paragraph should read: 

“The stability parameter E is a complex random variable. 
When Re[c] > 0, the transformation B(z,, z2) = 0 does not cause 
an overlap of the mapping of the z,-plane unit circle into the 
z,-plane unit circle. The resulting filter is, therefore, stable. When 
Re [ z] < 0 the filter is unstable. The parameter c can be used to 
determine the stability status of the filter.” 
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