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Digital Tomographic Filtering of Radiographs

JOSE M. COSTA, ANASTASIOS N. VENETSANOPOULOS, AND MARTIN TREFLER

Abstract—Conventional radiographs do not provide information about
the depths of details and structures because they are two-dimensional
projections of three-dimensional bodies. Taking advantage of the finite
size of the X-ray source and the divergent nature of the X-ray beam, a
radiograph can be processed by two-dimensional digital filtering tech-
niques, so that the image of a particular layer is improved, while the
others are degraded. - This technique is referred to as a tomographic fil-
tration process (TFP). This paper develops the mathematical and phys-
ical foundations of the method. Based on a model of the radiologic pro-
cess, which is described in the paper, the equations of image formation
in standard tomography, conventional radiography, and tomographic
filtering are derived and compared.

1. INTRODUCTION

HE problem of imaging three-dimensional bodies and ob-

taining information about the depth of details and struc-
tures has been recognized for a long time. Asearly as 1916 spe-
cial radiographic procedures were invented to obtain clear im-
ages of certain parts of an object by blurring images from other
parts [1]. These procedures will be referred to throughout
this paper as standard tomography. More recently, significant
advancements have been made in computer-assisted tomog-
raphy (CAT) and coded aperture imaging [2]. One of the re-
maining challenges is to improve the diagnostic value of the
billions of radiographs being produced in hospitals every year
using conventional radiography equipment. Conventional radi-
ography does not include special techniques that will highlight
single layers in the body being imaged. Enhancement and res-
toration techniques have had limited practical application to
the processing of radiographs [2]. With digital radiography,
techniques that had only been used in lab experiments could
now be applied much more readily. However, little work has
been published on the problem of recovering three-dimensional
information from a single radiograph (cf. [3]).

The purpose of this paper is to present-a procedure for im-
proving three-dimensional information in a radiograph using
digital techniques. This method has been referred to as to-
mographic filtering or a tomographic filtration process (TFP)
[4]-[6].

An analysis of the radiologic process has shown that two
factors that could be useful for obtaining three-dimensional
information are due to the finite size of the focal spot and the
diverging nature of the X-ray beam [6]. Indeed, due to the
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finite size of the focal spot, there is a blur associated with the
image of each layer, which is depth-dependent. This suggests
that there could be some kind of selective restoration of each
layer’s image (tomographic restoration). Also, the diverging
nature of the X-ray beam has the effect of magnifying each layer
in the film so that the spectra of the layers are scaled differently.
This suggests that selective enhancement of the layers could
be realized by means of spectral shaping filters (tomographic
enhancement).

This approach to tomographic restoration of radiographs uses
the depth-dependent focal spot blur. Section II describes the
model of the radiologic process, on which the development of
a TFP is based. The TFPitself is developed in Section III, where
the mathematics of standard tomography, conventional radi-
ology and TFP are derived and compared. Sections IV to VI
contain further analyses of TFP, in Section IV the transfer func-
tion of a TFP is compared with that of standard tomography
and conventional radiology, in Section V evaluations in terms
of quantitative performance parameters are summarized, and
in Section VI the effect of a TFP at various depths is analyzed.

II. MoDEL OF THE RADIOLOGIC PROCESS

Before any improvement of radiographs can be attempted, it
is necessary to study the characteristics of the image formation
process to find out what the depth-dependent features are. To
date, almost all theory of conventional radiography has dealt
with two-dimensional objects (cf. [7]). The very nature of the
radiologic process, however, forces one to consider three-dimen-
sional objects in all imaging problems. The radiographic process
consists of a sequence of transformations intimately related in
that the result of one forms the input to the next [8]. The
degradations introduced at each stage of the radiologic process
has been studied in great detail from the viewpoint of image
quality (e.g., [8]-[12]).

Fig. 1 shows a block diagram model of the radiologic process.
In general, block inputs and outputs are two-dimensional func-
tions representing distributions of intensities. Unless otherwise
specified, we will deal with intensity images rather than density
images’. The operation in each block can be represented by
mathematical equations relating the output to the input. There
are many factors, especially those which are random in nature,
not taken into account in the block diagram of Fig. 1(a). These
factors are considered to be noise and they are modeled by a

lAn intensity image is defined to be an image represented by values
which are linearly proportional to the intensity of the original radiant
energy component involved in the image formation. A density image
is defined as an image in which the values are proportional to the loga-
rithm of the intensity of the original radiant energy component involved
in the image formation [13].
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Fig. 1. Block diagram model of the radiologic process. (a) Noiseless. (b) With noise.

perturbing noise source at the output of each block in Fig. 1(b).
The manner in which the noise is combined with the image
depends on how the image has been formed and the nature of
the noise process. Usually, additive or multiplicative noise is
assumed.

The electron gun consists of a cathode emitting electrons,
which are focused and accelerated at high speed towards the
anode. The input to this block is electric energy and the out-
put is the spatial distribution of the current of high-speed elec-
trons. The region in the target where the X-rays and heat are
produced is called the focal spot. The angle formed by the tar-
get surface and the direction of the center X-ray is referred to
as the target angle. The intensity of the radiation tends to be
greater in the direction of movement of the electrons; however,
for applied voltages in the 50-150 kV range, used in diagnostic
radiology, X-rays are emitted more or less uniformly in all
directions.

Many studies have been published about the characteristics
of focal spots in X-ray tubes (e.g., [14]-[19]). The shape and
size of focal spots have been determined as well as their modu-
lation transfer functions (MTF’s) and point-spread functions
(PTF’s), both theoretically and experimentally. Nevertheless,
for mathematical simplicity, many researchers assume that the
focal spot can be represented by a geometrical shape (e.g., 2
square or a circle) with definite edges. In this case the MTF of
a focal spot is some form of a two-dimensional sampling func-
tion. Real focal spots do not have sharp edges, rather there is
an edge gradient shaped like a Gaussian function. Indeed, it has
been stated in the literature [14], [17], [20] that the MTF of
a focal spot resembles more a Gaussian function rather than a
sampling function and that this approximation is better in cer-
tain directions than others. A spatial Gaussian function seems
a good approximation to the spatial distribution of X-rays.
When the source of electrons is of finite size, the resulting dis-
tribution of X-rays is an image of the filament with the edges
approximated by Gaussian functions. Since our purpose is not
the design of radiologic systems but the design of filters that
will compensate for the degradations in existing systems, we
will assume that the output of the focal spot block, that is, the

distribution of X-rays emitted by the focal spot, can be mea-
sured. Therefore, we will not consider any further the charac-
teristics of the first two blocks.

The interaction of X-rays with matter (attenuation) may be
modeled by the differential equation in (1), where I(x) is the
intensity of a narrow X-ray beam as a function of the distance
x in the direction of propagation and u(x) is a total linear at-
tenuation coefficient ‘

dI(x)

a + u(x) I(x) = 0. (1)

The solution of (1) is given in (2):

I(x) = I(0) exp <— j (o) do>. 2)

X-rays propagate in straight lines. This fact controls the size,
shape, and position on the radiographic film of the shadow or
image of the various structures of the object being exposed. The
ratio of the size of the image to that of the object is called the
magnification. For a three-dimensional object, the magnifica-
tion is a constant in a layer paraliel to the film plane. If we
denote by d,, the distance from the focal spot to the ith layer,
and by d,, the distance from that layer to the film plane, the
magnification for that layer is given by

_di+d

m; P 3

The X-ray intensity distribution that reaches the imaging sys-
tem is a function of both the object and the X-ray intensity
distribution in the focal spot. To maintain generality in our
block diagram, we model the interaction of X-rays with matter
as a system with two inputs.

We denote by I,(x,, Yo; X, ¥) the X-ray intensity emitted
from the point (x,, y,) in the focal spot toward the point x,»)
in the film plane. The other input is denoted by uy, () and cor-
responds to the spatial distribution of absorption coefficients
in the object. uy (!) is defined along a line L from (x,,¥,) to

(x, ).
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The interaction between these two inputs can then be modeled
by the following integral equation:

I(x,y)= fj;s Io(xmy(ﬁx,y)

- exp <— f ur () dl> dx, dy,
L

which is a generalization of (2) and is obtained by integrating
over the region of existence of the focal spot (denoted here by
FS). The integral in the exponential is along a line L defined
by the point (x,, y,) in the focal spot and the point (x, y) in
the film plane.

A pragmatic approach to conventional radiographic image for-
mation systems has been dominant in past efforts in this field
[13]; namely, a linear space-invariant model is assumed. The
thickness of the object is neglected and the point-spread func-
tion is estimated by approximations. The space-variant model
is considered in the Appendix, where a solution is proposed to
convert the space-variant model into a spacednvariant one. The
salient feature of (4), as well as of subsequent equations which
will be derived from (4), is that it shows what happens when
X-rays are attenuated by three-dimensional objects, thus setting
the basis for the recovery and separation of the information
which is projected on the film. Other effects such as the inverse
square law and scattered radiation are not relevant here because
they do not contribute to differentiate among layers. The in-
tegrals in (4) can be approximated by summations. This dis-
cretization is suitable for implementation in a digital computer
and is useful in performing simulations. For this purpose we
coded the routine XRAY in Fortran IV. The details are given
in [6].

Due to the finite size of the focal spot, the shadow image of
a point or edge in the object extends over a finite region on the
film plane. Each edge or shadow is composed of two parts, the
umbra and the penumbra or edge gradient?. These effects will
be discussed further and exploited to derive the basis of tomo-
graphic filtering.

Several researchers have investigated the removal of penum-
bras in radiographs using optical signal processing techniques
(Minkoff [22], Krusos [23], and Trefler [24]).

When X-rays interact with matter, they are not only attenu-
ated in intensity, but also they are scattered through a finite
solid angle tending to produce a hazy background in the image
only indirectly related to absorption coefficients in the object
[25]. Therefore, we model this secondary radiation as additive
noise. The problem of estimating the PSF due to radiation
scattering and the realization of a compensating filter using
digital techniques has been studied by Hunt [26], [27].

The imaging system is the conversion process of an X-ray
image to a light image. Image intensifiers or screens are used

“

2Umbra is defined as the zone of lucence formed on a film when a
radiopaque object intervenes between the film and a source emitting
X-rays. Penumbra, or more accurately edge gradient, is defined as the
gradation in density which occurs at the margin of any given radiologi-
cal image, delineated medially by the point of maximum image lucence
and laterally by the point of minimum image lucence [21].

for that purpose. These imaging devices introduce degradations
which can be characterized by their PSF’s on their frequency
responses. The input to the imaging system is the X-ray inten-
sity distribution just before it enters a screen-film combination
or an image intensifier and the output is a film image or a tele-
vision image, respectively.

In addition to the low-pass characteristics of the frequency
response of the imaging device, the main distortions in the re-
cording and display of images are due to random noise and
nonlinearities. The main characteristic of this kind of noise
is that it appears to be multiplicative rather that additive [28]
[13]. If the images are sampled somewhere in the process,
nonlinearities can be compensated for in a digital computer [13].
All these effects have been studied in detail by several authors
[13], [28]-[31].

Restoration and enhancement, which are not normally present
in conventional radiologic systems, are the principal objectives
of this research. Given the characteristics of all other blocks,
we have to design the restoration and enhancement methods
that will improve the final output of the whole system, i.e., the
diagnosis.

Restoration refers to that part of the system that corrects for
degradations in other parts of the process. The design of the
restoration filter requires knowledge of the degradations in the
system, that is the transfer functions of the previous blocks.
The way this knowledge is acquired may be represented in the
block diagram by a feedforward path.

By enhancement we refer to the processing of images in gen-
eral, to present to the viewer (or subsequent machine) addi-
tional information or insight into some factor concerning the
preenhanced image. A comprehensive survey of image enhance-
ment techniques has been published by Andrews [32]. It must
be emphasized that the fidelity criterion of enhancement is not
attempting better object representation; it will depend strongly
on the type of pattern recognition process (PRP) used and on
the relevant features in the image. If the PRP is automated, a
mathematical criterion like the mean-square error will be in or-
der; but if the image is to be viewed by a human viewer, such
as the radiologist, then the psychophysics of vision and other
human factors must be taken into account [30], [33]. There-
fore, the design of an enhancement filter needs a feedback of
the characteristics of the PRP following it.

The Pattern Recognition Process (PRP) is the ultimate and
most intelligent system block in the whole process which results
in the diagnosis. The pattern recognition may be performed by
an automated process, a radiologist, or both in combination.
For a survey of automated PRP techniques for radiographs see,
for example, Hall [34].

II. A TOMOGRAPHIC FILTRATION PROCESS
A. Analogy with Standard Tomography

Standard tomographic techniques produce a tomogram by
moving a point-like X-ray source and the récording film in a
coupled manner, so that during the exposure the parts of the
object lying in one specific plane parallel to the film plane are
always projected on the same place on the film [1]. The X-ray
shadows of the other parts of the object will move in relation
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to the film. Thus a layer of finite thickness at a predefined
depth of the body is imaged sharply, whereas structures on both
sides of this layer are blurred. The layer whose image is in fo-
cus is referred to as the plane of cut or tomographic layer.

A tomographic filtration process (TFP) must produce a focus-
sing effect similar to that of standard tomography, but with no
moving parts. In a TFP, instead of moving the X-ray tube, the
finite size of the focal spot is used to advantage, and instead of
moving the film, a filter is used to process a conventional radio-
graph. To see that a TFP is indeed analogous to a standard

"tomographic system in miniature, as far as the tomographic
layer is concerned, consider the following model.

A focal spot is composed of a finite ordering of point sources.
Each emitting source produces its own image at a slightly dif-
ferent point in the image plane. The shadow from all these
point sources add up to form the observed image; overlapping
occurs throughout the entire image, but will only be discernible
at the edges where an intensity gradient is formed.

Since this system is linear we can apply superposition and
make an equivalent focal spot by moving a true point source
of X-rays over a region which includes the real focal spot. With
this model, (4) is still valid.

The movement of this point source is analogous to the move-
ment of an X-ray tube in standard tomography. Since in con-
ventional radiology the film does not move, the images of all
the layers are blurred. Therefore, in order to convert a radio-
graph into a tomogram we will pass the radiographic image
through a filter. Filters that produce a selective deblurring on
a conventional radiograph will be referred to as tomographic
filters.

Since a typical size for the focal spot is of the order of 2mm,
while the movement of an X-ray source in standard tomography
is of the order of 500 mm, we infer that a TFP would be more
comparable to zonography. Zonography is essentially standard
tomography using small displacements of the X-ray source, of
the order of a few mm [35, p. 360], [36, ch. 14], [37], [38].

- Other comparable narrow-angle tomographic techniques are
stereo zonography, narrow angle stratigraphy, and orthotomog-
raphy [36, pp. 7-8, 300-311].

B. The Mathematics of Tomographic Filtering

In order to derive the characteristics of a tomographic filtra-
tion process, the mathematics of standard tomography, con-
ventional radiology, and tomographic filtering are studied in
depth and compared.

A Mathematical Model of Standard Tomography: The deriva-
tion first of an equation describing the image formation process
in standard tomography will serve to derive the equation of
image formation in conventional radiology and to compare
tomographic filtering with standard tomography.

This derivation was motivated by that in [39]. We have re-
moved some of the constraintsin [39] (namely, the linear move-
ment of a constant intensity X-ray source), while we have added
others relevant to this application (namely, small displacements
of the X-ray source). Nevertheless, none of these constraints
imply a lack of generality in the derivation.

Consider the diagram of standard tomography in Fig. 2. In
our model, the punctual X-ray source can move anywhere in a

plane parallel to the film. This movement can be linear, circular,
spiral, etc., even the scanning of an area may be considered.
Generally, the intensity /, of the X-ray source may change with
its location. In standard tomography the film also moves in
synchronism with the X-ray source to keep the desired plane
of cut in focus.

Suppose a reference coordinate system x, y, z with origin at
0. The coordinates of a point in a plane at a depth z; are de-
noted by (x;, ¥;). Let A; and d be the distance from the X-ray
source to the plane of cut and to the film, respectively. Thus,
A, 2d- A, is the distance from the plane of cut to the film.

When the source of X-rays is at (x,, Vo), the coordinates of
the center of the film (x., y.) are given in (5):

X, = Kxo (53)
Ye=Kyo (5b)

where
== A2 /Al . (6)

Thus, the relationship between the absolute coordinates (x, y)
on the film plane and the coordinates (xz, y) of a point in the
film with respect to the center of the film is given by

x=x.+xp=Kx, +xg (7a)
V=yctyr=Ky,+yp (7v)

The coordinates (x;, y;, z;) of any point in the space between
the film and the focal spot can be expressed as a function of
(x5, ¥o)—the point of origin of the X-ray passing through
(xi» ¥i» 2:), and (xg, yp)—the point of impact of the X-ray on
the film:

(zi- Ay)x, + d-z;

x; = A, 4 xg (8a)
(zi- 82)yo ,d-z;
.= + 3
Vi A, g r (8b)

For a punctual source of X-rays at (x,, ¥,) emitting an in-
tensity I,(x,, Vo3 Xp, ¥y) towards the point (xz, yy) on the film,
the intensity I(xy, yg; X,, ¥ o) reaching that point is [cf. (2)]

(x5, 53 %0, Y0) = 1o(X0, Yo s X, Vy)
- exp § f uCes v 22 dss ©)
s

where u(x;, y;, z;) is the function representing the distribution
of linear attenuation coefficients and s denotes the path be-
tween (x,, ¥o) and (xy, yy).

Approximations:

1) 15(x5, Y05 X5, y5) can be assumed with good approximation
independent of (xy, ys) [39]. Thus, I,(xs, Yo; X5, ¥p) =
Io(x0, ¥o)-

2) ds is replaced by dz;:

. dz;
ds—ﬁ—~ %o /T+ tan?0dz;

cosg’ cos@

2 2
Xo tYo
2

Aj

= 1+ dZi.
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X-ray Source Plane

Plane of Cut

Film Plane

Fig. 2. Diagram of standard tomography.

If the displacements of the X-ray source are small compared to
the distance from the X-ray source to the plane of cut, then
X0y Vo << Ay, in which case ds > dz;.

3) Since the values of the linear attenuation coefficients, or
at least their variations from point to point, are small, the ex-
ponential in (9) can be approximated by the linear terms of
its Taylor series expansion® [39].

Therefore, taking into account all these approximations, (9)
becomes

d
[(xfayf;xo’yo)‘_'lo(xo,yo) [1 - f u(xi,yi: Zi)dzi] .
0
(10)

When the source of X-rays moves and its intensity is given by
I,(x5, yo) while the film also moves simultaneously as defined

3The validity of this assumption has been investigated by Orphanou-
dakis ez al., who concluded that, to describe linear tomography, a Fourier
decomposition approach leading to an MTF is reasonable, though there
are a few situations where a nonlinear analysis might be significantly
more accurate [41].

in (7), the total intensity after the exposure at any point G, ¥p)
on the film is

I(xg, y5) = fl(xf, V£ X0,Y0) dXo dy,

=jf]o(xo,y0) ,:1 -/;d ulx;, vi, 27) dzi:l

“dx, dy,
d
=IB_f Ifxz, yy, 2;) dz; (11)
0
where
I =ff10(x0syo)dxo dy, (12a)

It(xf’ Yfs z;) =fflo(xo, Yo) u(x;, ¥, z;) dx, dy, (12b)

and the values of x; and y; are given in (8) as a function of x,,,
Yo Xt Ve and 2.

g s g i



© cmameapetey S g .
— —

COSTA et al.: DIGITAL TOMOGRAPHIC FILTERING OF RADIOGRAPHS 81

Replacing (8) into (12b) and making a change of variables*,
we obtain

Ii(xfayfs zi)=Kt?ffIO(Ki‘§aKin)

(d Z;

z;-d Al
K;=— —_. 14
! Z;— Az d ( )

,-) dedn  (13)

Since (13) is a convolution, in the frequency domain it becomes
a product:

Gi(fx,fy:zi)=Hi(fx’fy’zi)Fp(fx’fy’zi) (15)

where

Gilfesfy» 2 = f f Ix,y,2) e 1= M dxedy  (16)
-d A,

z;-d A
z{fxafy’ x) K ffI"( - A, i_ A, '—dl-y)
] Zi

- e PTG gy dy 17
d-z; d-z;
Fu(fx9fy9zi)= ffﬂ< 7 i X, 7 : Js Zi>
. e RTEx+1yY) gy dy. (18)

Replacing (15) into the Fourier transform of (11) we obtain

(19):
d
G(fx’fy):IB 5(fx:fy)_f Gi(fx,fy,Zi)dZi
0

d
=IB B(fx,fy) - f Hi(fx’fyszi)
0

Fu(f)wfy,zi)dzi (19)

where G(fy, f,) is the Fourier transform of the tomogram
I(xg, y¢) [cf. (11)] and Hi(fx, f,, z;) is the transfer function
of the ith layer, at a distance z; from the film, as given in (17).

Equation (19) is the equation of standard tomography in the
frequency domain. This result agrees with that in [39], with
the appropriate changes of notation and assumptions.

Change of the Plane of Cut by Filtering the Tomogram: In
our model of standard tomography the depth of the plane of
cutis z; = A, (cf. Fig. 2). As

z;-d A zi-d A
A, : —x, — — )
2™ B °<zi—A2 d Vz-4a, d°,
in (17) approaches an impulse whose Fourier transform is a

constant.
Thus, the transfer function of the plane of cut is a constant

-d A i—d A
—g, andyo= % !

4
A2 zj— Ay d n

xo=

and its impulse response is an impulse, as expected by intuition
(cf. Fig. 2).

Equation (19) suggests that we can change the plane of cut
by filtering the tomogram. Indeed, suppose we are interested
in the plane at a depth z; =z,. Dividing both sides of (19) by

H(fy, fy) & H(fx, fy, 2:), we obtain

SUnty) _ o 8 ty) (¢ Hifeo Sy 20)
H(f, fy) H(ffy) Jo  Hfx.fy)
u(fxafyazi) dZ,-. (20)

After filtering the tomogram with H~ ' (f, fy), the overall
transfer function for the layer at a depth z, is a constant, thus
this layer has become the new plane of cut. The overall trans-
fer function of the previous plane in focus (z; = A,) is now
H' (fy, fy), namely, the filter transfer function. The overall
transfer function for any other layer is

Hi(fxsfy’ zi)I{“1 (fx: fy)«

A Mathematical Model of Conventional Radiology: Con-
sider a radiologic system with focal spot intensity distribution
I,(x,, y,) and film to focal spot distance d. The diagram in
Fig. 2 still applies if we let A, =0 and the movement of the
punctual source of X-rays in standard tomography is replaced
by the intensity distribution of the finite size focal spot. Under
these conditions all the equations derived previously are still
valid with A, =0.

The intensity on the film is given by (11), with I as previously
defined in (12a) and /;(xy, yy, zs) as given in (21) [cf. (13)]:

z;~d z~—d
Li(xs, yr, 2)) = K} ff&( ‘z~ £, lz- 17>
H I
_ {d—z
o WP

By letting u(x, y) = 8(x, »), an impulse, we obtain the impulse
response of the ith layer.

In the frequency domain (15) and (19) are equally valid, but
in conventional radiology the transfer function H(f%,fy, z;) of
each layer is given by (22), [cf. (17) and let A, =0]:

z;-d  z;-d
Ili(fx:fy’zi)=Kl? ij()( : X, - J’>
Zj Zi

- e 2+ 1yY) dx dy (22)

{0 O dedn. 1)

where

Zi‘d

Ki =
Zi

Therefore, the mathematical models of standard tomography
and conventional radiology are similar but with different trans-
fer functions. In radiology none of the transfer functions is
identically equal to a constant except in the limiting case that
z; =0 (film plane).

Tomographic Filtering of Radiographs: As we did in (20) we
can filter a radiograph so that the overall transfer function of
one of the layers is equal to a constant, thus converting a radio-
graph into a tomogram. But now H;(f, f, z;) is defined in
(22) and
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H(fx’fy)=i1i(fx’fyazi)|i=t=Ht(fx’fy’zt)
_ (zt—d)szlo[zt—dx, zs-d y:'
Z; 2 z;

e ) gy gy (23)

Consequently, we have shown that by comparing the move-
ment of a punctual X-ray source with a finite size focal spot and
replacing the movement of the film in standard tomography by
the filtration of a conventional radiograph, we can establish a
conceptual analogy between standard tomography and tomo-
graphic filtering. In the following section this analogy is ana-
lyzed further.

IV. COMPARISON OF TRANSFER FUNCTIONS

The frequency domain equation of image formation in radi-
ology (24) was derived in the previous section [cf. (19)]:

d
G(fx,fy)=]B 6(fx>fy)'j Hi(fx>fy’zi)
0

'F/.t(fxafy’ z;)dz; (24)

where G(fy, f,)) is the Fourier transform of the resulting image,
Ip is a constant, H;(fy, f,, z;) is the overall transfer function of
the ith layer at a depth z;, and F,(fy, f,, 2;) is the Fourier trans-
form of the (scaled) distribution of linear absorption coeffi-
cients in the ith layer [cf. (18)].

Equation (24) applies to standard tomography, conventional
radiology, or tomographic filtering by using the transfer func-
tion given in (25), (26), or (27), respectively [cf. (17), (20),
(22), and (23)].

Standard Tomography:
2
ST v [2izd ﬂ]
Btz = [25
z;-d Al Zi"d A1 }
. I ! —x, b
U "{zi-Az d%z-8, d°
- e P+ 1y3) g dy. (25)
Conventional Radiology:
CR N = Zi"d 2ff {Zi—d Zi—d}
Htc (fxafyazz) [ z; ] 1, z; X, Z y
- e U+ 1yY) g gy (26)
Tomographic Filtering:

Z;— d 2 Zi‘d Zi—d
1, X,
Zi ' i Zi

among these methods. A good objective indication of perfor-
mance of a radiologic system is given by the overall transfer
functions of the layersin the object. The qualitative differences
among these transfer functions are discussed next.

The Function I,/. , .): The function I,,(. , .)in (25) is sub-
stantially different from the function 7,(. , .) in (26) and (27).
In conventional radiology 7,(. , .) is defined over an area called
the focal spot and the edges of this intensity distribution are
not sharp [14], [17], [20]. On the other hand, in tomography
I,(.,.) defines the movement of a point-like X-ray source which
is turned on and off over a line which can be straight, circular,
elliptical, spiral, hypocycloidal, etc. This means that the blur
in conventional radiology is more uniform in all directions than
in standard tomography. The uniformity of the blur is the rea-
son why the more complicated X-ray source movements are
preferred in tomography; the scanning of an area by an X-ray
source has to also be considered in tomography, it has been re-
ferred to as areal tomography [40, p. 63]. Of course, the source
of X-rays in tomography is also of finite size but the blur that
this produces is generally negligible compared to the blur due
to its movement.

Nature of the Process: The transfer functions in (25), (26),
and in the numerator of (27) correspond to radiologic proce-
dures, while the transfer function in the denominator of (27)
corresponds to an image processing operation (inverse filtering).
This means that the errors and noise are of different nature in
each case. Instandard tomography additional blur and/or errors
occur if the patient moves during the exposure and/or there
are mechanical misadjustments. On the other hand, in a tomo-
graphic filtration process the effect of a patient moving is not
so critical because the exposure time is shorter, but the filter-
ing process is not ideal in practice and noise is amplified by the
inverse filter, especially at high frequencies where the gain is
greater.

Transfer Function of the Tomographic Layer: The transfer
functions in (25) and (27) are equal to a constant when x;=
z{ = 4,), while the transfer function in (26) cannot be iden-
tically equal to a constant (except in the limiting case that z; =
0, or I,(x, ) is an impulse). This is the basic point in the anal-
ogy between tomographic filtering and standard tomography.

Transfer Functions of the Out of Focus Layers: Even as-
suming an identical /,(. , .} in every case (which is not practi-
cally possible), generally the transfer functions in (25), (26),
and (27) for the out of focus layers are not equal. The charac-
terisitcs of the overall transfer functions of the out of focus
layers in a tomographic filtration process are considered in Sec-
tion VI. For an analysis of the transfer functions in standard
tomography see, for example, [39].

y} e2Uxx* 1Y) gx dy

HiTF(fx’fy’ Zi) = [

where the depth of the tomographic layer is z, = A, as usual.
In spite of the fact that the equations of image formation in

standard tomography, conventional radiology, and tomographic

filtering are similar, there are fundamental physical differences

N ey

d
X,
t

z,—-d @7

Zt

V. QUANTITATIVE PERFORMANCE PARAMETERS
The transfer functions contain all the information necessary
to compare the various systems. However, they are inconve-
nient to calculate and compare. The first simplification is to
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ignore the phase transfer function and consider only the magni-
tude transfer function, usually referred to as the modulation
transfer function (MTF). Nevertheless, for ease of comparison
single number parameters are commonly used in radiology.
Tomographic filtering has been compared with standard tomog-
raphy/zonography and conventional radiology on the basis of
the following parameters: the exposure angle, the thickness of
the tomographic layer, the rate of change of the MTF, the signal-
to-noise ratio, and the patient dose [6], [42]. The conclusion
of that comparative assessment is that tomographic filtering can
be an improvement over conventional radiology, but cannot
achieve the results of standard tomography. The main advan-
tage of tomographic filtering is in reducing the radiation dose
to the patient. These analytical results have been corroborated
practically by processing both simulated radiographs and actual
radiographs [6], [43]. A brief summary of the comparative
assessment of tomographic filtering follows.

Thickness of the Tomographic Layer: In standard tomography
the thickness of the cut is normally defined as the distance be-
tween two levels which have a tomographic blurring that is in-
sufficiently large to be noticeable in the presence of the usual

radiographic blurrings. This is a subjective definition and it-

depends on the relative amount of other blurrings such as those
due to the focal spot intensity distribution and patient move-
ment. On the other hand, in a tomographic filtration process
(TFP) the tomographic blur is based on the focal spot intensity
distribution and the blur due to patient movement is negligible
because the exposure time is very short.

Hence, the thickness of the cut depends on the extent of the
movement of the X-ray source in tomography or the size of the
focal spot in a TFP. It is more usual to give the exposure angle
rather than the extension of the movement of the X-ray source
(or size). The exposure angle is defined as the angle through
which the projecting ray of a central point of the plane of cut
“moves” during the exposure. In tomography the exposure
angle normally ranges from 1-5° (in zonography) to 120-170°
(in transversal tomography) [36] . In conventional radiography,
and therefore in a TFP, the exposure angle is determined by the
size of the focal spot. With a typical focal spot size of 2 mm
and focal spot to plane distance of 1000 mm, the exposure
angle is about 0.1°. Thus, in terms of the exposure angle a TFP
would be closer to zonography than to any other tomographic
technique.

When exposure angle is translated to thickness of cut, in stan-
dard tomography it is of the order of a few millimeters, in
zonography it is on the order of a few centimeters, and a tomo-
graphic filtration process even larger. Due to the lack of ex-
perimental data conclusive results cannot be given for a TFP
[6]. However, it is expected that by using visual workstations
for interactive viewing (e.g., with zooming and magnification)
the apparent thickness of cut in a TFP could become close to
that of zonography. A TFP is an improvement over conven-
tional radiography but it cannot achieve the thin cuts of stan-
dard tomography.

The Rate of Change of the Modulation Transfer Function
(MTF): A measure has been proposed to quantify the contrast
between layers after they have been imaged on the film [6].
This is based on the rate of change of the transfer functions in

(25), (26), and (27) from layer to layer for a specific type of
exposure function /,(x,, ¥,). Quantitative results were ob-
tained by assuming a Gaussian function. This may not be realis-
tic, but it provides a good basis to compare the performance of
the tomographic filtration process with that of standard tomog-
raphy. When identical exposure functions are considered, the
results showed that for layers between the focal spot and the
plane at adistance (d - A;)/(2 - d - A,) from the film, the trans-
fer function in a TFP varies faster from layer to layer than in
the equivalent system using standard tomography. It can be
shown that this interval always contains the plane of cutz; = 4,,
hence in a region around the tomographic layer a TFP gives
better contrast between layers than standard tomography.
However, if the normal sizes of the exposure function are taken
into consideration (i.e., about 500 mm in standard tomography
and about 2 mm in TFP), the performance of standard tomog-
raphy is by far better because the interval around the plane of
cut is negligible.

The Signal-to-Noise Ratios: The signal-to-noise ratio (SNR)
is defined here as the ratio of the power of the signal from the
tomographic layer if it was the only one present in the object
and the power of the noise contributed by all other layers. This
signal-to-noise ratio provides another measure of the contrast
of the image of the plane of cut with respect to the others.

The object being X-rayed, represented by the distribution of
linear attenuation coefficients, is considered to be a random
process. The power is given by the integral of its power spec-
tral density function. To determine the signal-to-noise ratio the
power component due to the image of the tomographic layer
(P,) and the noise power due to the other layers (P,) are sepa-
rated. It is also useful to separate the noise power due tolayers
between the anode and the tomographic layer (P,) and the noise
power due to layers between the tomographic layer and the film
(Pf). Equation (6) shows how they are related:

P=P,+P,=P,+P, +P;. (28)

Formulas to calculate these powers can be found in [6]. The
various signal-to-noise ratios can then be calculated as follows:

SNR = P,/P, C@9)
SNR, = P,/P, (30)
SNR; = P,/P; €y

SNR, - SNR
SNR = —nRa ' SRRy (32)
SNR, + SNR;

Equations (28)-(32) were calculated in about 4000 cases.
Table I shows a representative sample of the results—the vari-
ation of the signal-to-noise ratio with respect to the nominal
thickness of the tomographic layer. To calculate Table I the
following parameters were assumed: d = 1000 mm, z, = 500 mm,
object of thickness 264 mm and positioned at equal distances
from film and focal spot, object made of white noise band lim-
ited at 5 cycles/mm, and I,(x,, ¥, ) =exp (- 100 - x2 - 100 - y3).

It is clear that the SNR (also SNR, and SNRy) increases with
the thickness of the tomographic layer, as expected, because
of its definition. Other results have shown that when the ob-
ject is moved closer to the focal spot or the size of the exposure
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TABLE 1
THE SIGNAL-TO-NoOISE RATI0S VERSUS THE THICKNESS OF THE CUT

Thickness of

the cut (mm) 4 20 40 100 200 240
Standard SNR  0.017 0.089 0.19 067 36 11.0
tomography SNR, 0.033 0.180 0.39 1.30 7.1 23.0
SNRy 0.033 0.180 0.39 130 7.1 23.0

Conventional SNR  0.015 0.081 0.18 0.60 3.1 9.8
radiography SNR, 0.036 0.190 043 150 8.3 27.0
SNRy 0.026 0.140 0.30 0.99 49 150

Tomographic SNR  0.013 0.068 0.15 048 23 74
filtering SNR, 0.045 0.240 0.55 2.10 13.0 47.0
SNRy 0.018 0.093 0.20 0.62 28 8.7

function increases, the SNR increases in standard tomography,
but in conventional radiography and tomographic filtering it
decreases. When the system parameters are the same (i.e., any
column in Table I), SNR, is maximum for tomographic filtering
and minimum for standard tomography. On the other hand,
SNRy and SNR are maximum for standard tomography and
minimum for tomographic filtering. This shows that tomo-
graphic filters perform better for layers in the object closer to
the film. When the tomographic layer is closer to the focal spot,
the high pass effect on the layers on the side of the film pro-
duce the decrease in SNR through an increase in the noise power.

These measures give only an indication of the performance
from a theoretical point of view. In practice, the object is very
structured and the effects of noise due to other layers cannot
be calculated statisticaily.

VI. VARIATION OF THE POINT-SPREAD FUNcTION (PSF)
AND THE TRANSFER FUNcTION (TF) witTH DEPTH

To conclude this paper, the effects of tomographic filtering
on the images of layers at various depths between the focal spot
and the film will be examined in the space domain in terms of
the shape of the impulse response or PSF and in the frequency
domain in terms of the shape of the overall magnitude response.
For simplicity and without loss of generality, one-dimensional
functions are considered.

A. Space Domain

First, a space domain characterization can be provided by the
overall impulse response of the TFP. Suppose a focal spot with
a Gaussian X-ray intensity distribution, namely,

I(x)=e"%".

The transfer functions and impulse responses of such a system
were derived [6]. Fig. 3 shows the overall impulse response of
a TFP at various depths A; +¢, for0=2,d =1000 mm, 4, =
500 mm, -1<f<1 cycles/mm, sampling interval = 1/128
cycles/mm, and several values of ¢ (in mm) as indicated with
the plots in Fig. 3. The overall impulse response for the tomo-
graphic layer is obviously an impulse and is not shown. It is
readily seen in Fig. 3(a)-(d) that between the plane of cut and
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the focal spot the impulse response is a Gaussian function whose
size increases when the distance to the plane of cut increases.
On the other hand, between the plane of cut and the film [see
Fig. 3(e)-(h)], the impulse response contains side lobes which
increase with the distance to the tomographic layer. Ingeneral,
the wider the impulse responses and the greater the side lobes,
the better the contrast between the tomographic layer and the
overlaying layers. However, the ripples in the impulse responses
for the layers on the film side may introduce artifacts which
might mask structures in the other layers.

The reason for the distinctive nature of the impulse responses
on each side of the tomographic layer is very simple. On the
focal spot side (¢ > 0) the transfer function is a Gaussian func-
tion whose inverse transform is another Gaussian function, Fig.
3(a)-(d). On the film side (¢ < 0), however, the transfer func-
tion is an inverse Gaussian function which does not have an in-
verse transform. It was necessary to truncate this ideal transfer
function with a frequency domain window (that is, an ideal
low-pass filter) with a passband from -1 to 1 cycles/mm.

The analysis presented here could also be applied to investi-
gate the effect of a time or space scaling error in any inverse
filtering problem.

B. Frequency Domain

We now analyze this phenomenon in the frequency domain.
Ideally a tomographic filter should have a frequency response
such that in combination with the transfer function of the
radiologic system, the resulting overall transfer function would
be equal to a constant for the tomographic layer and equal to
zero everywhere else. In practice, the second condition cannot
be met, not even closely. It is the purpose of this analysis to
investigate the overall frequency response at different depths.

The overall transfer function for a particular layer is equal
to the quotient of the transfer function for that layer without
the tomographic filter and the transfer function of the tomo-
graphic layer. Evidently, for the tomographic layer the overall
transfer function is identically equal to 1. The overall transfer
function for other layers is shown in Fig. 4. Since the shape of
H is low pass and its bandwidth increases with depth, it is clear
that the tomographic filter acts as a low-pass filter for layers
between the plane of cut and the focal spot, and as a high-pass

- filter for layers between the plane of cut and the film.

To fully understand the effects of the process on different
layers we must also consider the characteristics of the spectrum
of the projected object. Since different layers suffer different
magnifications during exposure, the corresponding two-dimen-
sional Fourier transforms of their shadow images are scaled
accordingly. Assuming that each layer has approximately the
same spectrum, the relative scalings due to magnification are
shown in Fig. 5. These different scalings of the shadow images
(superimposed on the film) of the layers in the object, suggest
a processing technique that will be referred to as tomographic
enhancement (as .opposed to tomographic restoration, which
has been described in this paper). Indeed, a low-pass filter will
enhance the images of layers closer to the focal spot, while a
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normalized amplitudes of the PSF.

Fig. 3. (a)~(h) Overall impulse responses with a Gaussian focal spot.

Characteristics of the overall transfer function in
tomographic filtering

focal spot
H; (f,7;) 3>z
focal spot | G
side f
Hiltz) 4 =2,
11 plane of cut
e
f
z:~lz
H; (1.2)) "’%
2, film side
—
f
film

Fig. 4. Variation with depth of the overall magnitude response of a TFP.
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Fig. 5. Scaling of the spectra of the images of layers at various depths.

high-pass filter will enhance the images of layers closer to the
film. With bandpass or spectral-shaping filters, selective en-
hancement of given layers could be realized. While the tomo-
graphic filtering technique presented in this paper aims at pro-
ducing tomograms by filtering radiographs, other techniques
described in the past in the literature were aimed at filtering
standard tomograms to remove defocus blur (e.g., [40], [44],

[45]).

VII. CONCLUSIONS

A TFP is a technique for recovering three-dimensional infor-
mation from a single radiograph. The mathematics of tomogra-
phic filters have been derived and analyzed. The advantages
of a TFP are that it can be used with conventional radiography
equipment and, by processing a given radiograph with filters
with different parameters, additional depth information can
be obtained without increasing the patient dose.

The transfer functions of standard tomography, conventional
radiology, and a TFP have been derived and compared. It has
been shown that a TFP has a low-pass filter effect on the images
of layers between the plane of cut and the focal spot and high-
pass characteristics on the images of layers between the plane
of cut and the film.

APPENDIX

CONVERSION OF A SPACE-VARIANT MODEL
INTO A SPACE-INVARIANT ONE

The radiologic process is space-variant for several reasons [6] .
In this Appendix we propose a solution to the problem of lack
of parallelism of the focal spot and film planes.

There is a simple way to correct for this type of space vari-
ability of the radiologic process in a digital computer. As
shown in Fig. 6, the radiologic image can be sampled uniformly
and then a new image is calculated by interpolation. This new
image is the one that would correspond to a plane parallel to

Focal Spot

Object is
Defined by
Layers Parallel
to Focal Spot

Centre Ray

|5\\ Original

N
<3

Film Plane

Fig. 6. Conversion of the space-variant model into a space-invariant one.

the focal spot; therefore, it has space-invariant properties. The
new image can be calculated anywhere in the X-ray field. In
order to minimize size distortions we have chosen the plane
that, being parallel to the focal spot, passes through the inter-
section of the center ray and the film plane. With this approach
the reconstruction of the object is made on layers parallel to
the focal spot. The information required for the conversion is
the following: the angle of the focal spot, the focal spot to film
distance, and the orientation of the film.

The relationship between the coordinates (x, y) over the film
plane in the space-variant system and the coordinates (x,y) over
a plane parallel to the focal spot can easily derived by geometric

A A
considerations. Indeed, referring to Fig. 7, since FBO ~ FAE
A A
and FOD ~ FEC, we have

FO_FE d_d-$una __ df

BO AE  x bs ’ d- ¥ sina
(35a)

and

FO _FE d _d-§sina _dycosa

oD EC vy Pcosa Y d-9sina’
(35b)

Therefore, the intensity distribution (8, $) of an equivalent
space-invariant system can be expressed as a function of the
intensity distribution 7 (%, $) of the space-variant system as
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Fig. 7. Relationship between the coordinates on the film plane in the
space-variant model and in the equivalent space-invariant model.

follows:

ds d?cosa)h 36)

I(?,ﬁ)'—'I(X,J’):](d_j)sina’ d-9sina

In a practical case (36) would be applied as follows. The radio-
graph is either sampled at nonuniform intervals as shown in (36)
or a new set of samples is obtained by interpolating a uniformly
sampled radiograph. This sampling rate should be sufficiently
high so that the interpolating error isnegligible. The new space-
invariant intensity distribution 7 (%, 9) is used and processed
instead of I(x, y), but taking into account the new geometry
of the system, that is the focal spot to plane £, $ distance.

It must be emphasized that this transformation gives a hypo-
thetical image which does not really exist in the actual system
but which results in a space-invariant system without loss of
information. Indeed, if we wanted to calculate the true in-
tensity in the actual system when the radiation crosses the plane

%, 9 parallel to the focal spot, derived from the intensity dis-
tribution on the plane x, y, the inverse square law correction
factor should be included to take into account the diverging
nature of X-rays. However, if we were to do that we would
introduce another source of space variance due to the obliquity
of the X-rays on impact over the plane £, § and therefore the
resulting image would be distorted more than it would be
corrected.

When the processed film area is small the transformation (36)
may not be necessary because the variations of the impulse re-
sponse within small areas is relatively small. A simple rule has
been derived [6] to determine the maximum percent variation

V of the extent of the impulse response in the y-direction:

_ (y2 = y1)sina
d(cosa)+y, sina

100 percent

where y, and y, are the ordinates of the film area edges which
are perpendicular to the y-axis. For example, if a=70° d =
1000 mm, y; =50 mm and y, = 100 mm, we obtain V=12
percent only. On the other hand, if we consider a larger area,

say y; = 50 mm and y, =300 mm, we obtain V' = 60 percent;
hence, in this case some correction would help.
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