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Design and Realization of Digital Tomographic Filters for Radiographs

J.M. Costa Vela

ABSTRACT

Radiographs are two-dimensional representations of three-dimensional
objects. Using conventional X—fay imaging techniques a shadow view of
the body under examination is produced which does not contain explicit
information of the depth of details and structures. Due to the finite
size of the X-ray source, the image of each layef of a three-dimensional
object exposed to X-rays is blurred to an extent which depénds on the
distance from that layer to the X-ray source and to the film plane.
Taking advantage of this fact, a radiograph can be processed in such a
way that the image of a particular layer is deblurred while the other
layers are not. This method is referred to as a tomographic filtration
process and can be implemented using digital techniques.

In this dissertation, a model for the radiologic process from the
viewpoint of communication system theory is developed and is used to
determine what characteristics'the tomographic filters should have.
Based on these characteristics, theoretical evaluations both in the
space and frequency domains show that tomograchic filters can improve
the ﬁsefulness of conveﬁtional radiographs with respect to three-
dimensional information.

Two-dimensional digital signal processing techniques are developed

which can be used to design digital tomographic filters as well as other

ii




useful types of digital filters for the restoration and enhancement of
imagery. The data management problems which arise in image processing
are considered and some solutions are proposed.

Finally, digital tomographic filters are used to process both
computer simulated radiographs and actual radiographs. Pictorial
results are shown for different set-ups of the X-ray system and different
paraneters of the filtration process. The performance of tomographic
filtering is compared with that of conventional radiology and that of
standard tomography in terms of several measures, such as: the thick-
ness of the to;ographic layer, the rate of change of the Modulation

Transfer Function and the signal-to-noise ratios. Some recommendations

for possible extensions of this research are also given.
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The Rintgen Rays, The Rontgen Rays
What is this craze,

The town's ablaze,

With the new phase

04 X-rays ways

I'm ull of daze,

Shock and amaze,

Forn nowadays,

1 hean they'll gaze,

Thro! cloack and gown — and even sfays,

These naughty, naughty Rontgen Rays.

0ld popular verse quoted by

John G. Taylor, New Worlds in Phystics.

London: Faber & Faber, 1974, page 49.
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Chapter I

INTRODUCTION

1.1 Nature of the Problem and Research Motivation

To date, almost all theory of incoherent imaging has dealt with
two-dimensional objects. The very nature of the radiologic process,
however, forces one to consider three-dimensional objects in all imaging
problems. Amazing as it may seem, this problem has not been fully
appreciated in conventional radiology and even the most current analyses
of standard X-ray imaging systems treat them as if they were designed to
project two-dimensional objects. Nevertheless some special procedures
have been devised to image three-dimensional objects which will be
reviewed in the next section.

Let us consider the nature of the X-ray beam that forces us to
develop new imaging theories: 1) the beam penetrates the object and
thus information from all depths in the object is displayed; 2) lack of
imaging devices for X-rays such as lenses and mirrors, force the use of
a shadow casting geometry; and 3) this geometry is complicated by
a) the size, shape and intensity distribution of the source of X-rays;
b) beam divergence which implies that parts of the object located
directly above each other are not imaged at the same point in the image
plane, causing at best serious distortion of size and shape relationships
and at worst complete obliteration of information due to overlapping of
images of different parts of the object; and <c) the angle of the source
of X-rays , which implies that all the factors mentioned in a) and b)

depend strongly on the location in the object field.




The previous considerations relating to the X-ray imaging problem
have usually been ignored. However, they can be studied from two points
of view. First, the properties of the X-ray imaging system itself with
regard to design and use of X-ray systems. Second, the design of
restoration filters to compensate for the degrading effects in the
system. These are not really different problems but only two related
aspects of the same problem.

In this work we shall be concerned with the problem of retrieving
three-dimensional information from radiographs, without altering the
specifications or operating conditions of the X-ray system. Using
conventional X-ray imaging techniques, a shadow view of the body under
examination is produced which does not contain expiicit information of
the depth of details and structures. This drawback has been overcome
partially by standard tomography and three-dimensional radiography or
computerized tomography. With these techniques care must be taken to
avoid complexity, excessive patient dose, cost, and time consumption,

Our approach consists in the design of digital filters for
conventional radiographs. These filters will emphasize the structures
and details contained in a given depth of the body. This is done by
deblurring the image of the layer of interest while the other layers are
left partially blurred to an extent which depends on the position of

each layer. We will refer to these filters as tomographic filters.

1.2 Antecedents

This section contains the historical development of the problem.

A brief review of the relevant literature and pertinent background




references are given here. More specific references are given whenever

needed within the text.

Three-dimensional techniques

As early as 1916 [1] special radiographic procedures were invented
to obtain clear images of certain parts of an object by blurring
redundant images of other parts. These techniques have been reinvented,
modified and improved over the years, and are all based on the same
principle, which will be discussed and used in Chapter III. These
methods have received different names such as laminagraphy, stratigraphy,
tomography, stereoradiography, etc. The most commontly used is that
of tomography: from the greek words ''to write a cut".

Another approach to solve the problemdconsists in using more than
one X-ray image or projection of the object to reconstruct any layer by
digital or optical methods. A comprehensive review of these methods has
been done by Mersereau [2], [3]. He even proved that in theory,
bandlimited functions of finite order can be reconstructed exactly from
a single projection. Nevertheless this method is so sensitive to noise
that it can not be used in any practical application [2].

Another technique [4] uses a spatially-modulated X-ray source, such
as a Fresnel zone plate pattern, which produces a shadow image of the
object, but in a coded form. Decoding is done using optical techniques
and only a thin slice of the object is in focus at one time, but other
slices may be brought into focus by changing lens positions in the
reconstruction system. Alternatively, digital techniques can also be

used in the reconstruction.




To our knowledge no other attempts to recover three-dimensional

information from a single projection have been published.

Two~dimensional techniques

The work done in radiograph processing is vast and it may be
catalogued or studied from several points of view. Rather than give
here a list of references we include them in Chapter II in a more
organized way, in parallel with the description of a model for the

radiologic process.

Background

The background material required for this research includes topics
from various discipliﬁes such as radiologic systems, communication
systems, image processing, and digital signal processing.

For the reader unfamiliar with radiologic systems we have found the
monographs of Meredith and Massey [5] and Brinker and Skucas [6] quite
comprehensive and readable.

In the general field of image processing there exists tutorial
material [7]-[11] which includes extensive lists of additional references.

Since we are interested in filtering images using a computer,
background material on two-dimensional digital signal processing

techniques can be found in [12]-[15].

1.3 Research Contribution

The original contribution of this research consists basically in
the derivation, evaluation, and implementation of tomographic filters

using digital techniques. A list of specific contributions toward this




goal follows.

1) A study of the characteristics of the space-invariant and space-
variant models of the X-ray image formation process and determination
of their impulse responses (Ch. II).

2) The conversion of the space-variant problem, due to lack of paral-
lelism between focal spot and film, to a space«invariant one (Ch. II).

3) The development of a tomographic filtration process to emphasize
three-dimensional information in conventional radiographs (Ch. III).

4) The theoretical evaluation of tomographic filters bdth in the
space and frequency domains (Ch. III).

5) The approximation of the transfer functions by separable functions
(Ch. III).

6) A new technique for cascading rotated filters that is capable of
approximating better circularly-symmetric two-dimensional recursive
filters as well as certain types of non-circularly-symmetric recursive
filters (Ch. IV).

7) A group of linear spectral transformations for two-dimensional
digital filters (Ch. IV).

8) The development of data management techniques for processing
large two-dimensional arrays of data stored sequentially in auxiliary
storage. These include recursive techniques and FFT algorithms (Ch. IV).

9) The design and implementation of tomographic filters in a digital
computer (Ch. V).

10) The practical evaluation of tomographic filters with both computer-

simulated radiographs and actual radiographs (Ch. V).




11) A comparative assessment of tomographic filtering taking as
benchmarks two well-established radiological procedures: standard
tomography and conventional radiology (Ch. VI).

12) Some recomendations for future research (Ch. VII).

13) A novel derivation of the linear model of conventional radiology
by considering it as a special case of standard tomography and generaliza-
tion of the Concept of tomographic filtering to both conventional radio-
graphs and standard tomograms (App. A).

14) The simulation of a three-dimensional radiologic process in a
digital computer (App. A).

15) A suggestion to use the projection-slice theorem as an alterna-
tive to the Henkel transform for computing the Fourier transform of cir--
cularly symmetric functions without the need for Bessel functions (App.B).

16) The development of a number of software programmes for the design
and realization of both recursive and non-recursive two-dimensional digital

filters (App. Q).

1.4 QOrganization of the Contents

This work is divided into six parts. A complete model for the
radiologic process, on which this research is based, is developed in Chapter
II. The core of this research is then presented in Chapter III, where the
tomographic filters are proposed and discussed; and their performance
evaluated theoretically. After studying in Chapter IV the two-dimensional
digital signal processing tools, they are used in the synthesis and practical
evaluation of tomographic filters in Chapter V. The comparative performance

of tomographic filters with respect to conventional radiology and standard




tomograﬁhy is developed and discussed in Chapter VI using several
measures. Finally, the conclusions of this research and some recom-
mendations for future work are given in Chapter VII.

For the sake of continuity in the text, the development of
auxiliary mathematical expressions and computational algorithms are

given in four appendices.
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Chapter II

A MODEL FOR THE RADIOLOGIC PROCESS

2.1 Introduction

Before we attempt any improvement of radiographs we must study the
characteristics of the image formation process to find out what are the
degradations which should be corrected.

The radiologic process consists of a sequence of transformations
intimately related in that the result of one forms the input to the
next [16]. The process begins with the generation of X-rays, continues
with the exposure of an object, and ends with a diagnosis.

The degradations introduced at each stage of the radiologic process
have been studied in great detail from the viewpoint of image quality
[16]-[20]. However, most researchers assume that the object being
X-rayed is two-dimensional; thus, the problems due to object depth are
usually ignored.

In this chapter we develop a block diagram of the radiologic
process which is valid for three-dimensional objects and we study the

characteristics of each block.

2.2 Block Diagram

In Figure 2.1 we propose a block diagram model for the radiologic
process. In general, block inputs and outputs are two-dimensional
functions representing distributions of intensities. Unless otherwise

A

specified we will deal with intensity images rather than density imagesl.

+ An intensity image is defined to be an image represented by values
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The operation in each block can be represented by mathematical equations
relating the output to the input. There are many factors, especially
those which are random in nature, not t;ken into account in the block
diagram of Figure 2.1(a). These factors are considered to be noise and
they are modelled by a perturbing noise source at the output of each
block in Figure 2.1(b). The manner in which the noise is combined with
the image depends on how the image has been formed and the nature of

the noise process. Usually additive or multiplicative noise is assumed.

2.2.1 Electron Gun

The first block represents the electron gun consisting of a
heated f;lamenﬁ or cathode emitting electrons which are focused and
accelerated at high speed towards the anode. Some heat is also produced.
The input to this block is therefore electric energy and the output is the
spatial distribution of the current of high-speed electrons. The distribu-
tion and speed of the electrons in space depends upon various factors [21],
such as the position a?d shape of the filament, the voltage and current in

the filament, and the voltage and current in the anode.

2.2.2 Focal Spot

The focal spot is the source of X-rays. When the beam of
high-speed electrons is stopped by a tungsten target some of its kinetic

energy is converted into electromagnetic energy. A very large amount

which are linearly proportional to the intensity of the original radiant
energy component involved in the image formation. A density image is
defined to be an image in which the values are proportional to the
logarithm of the intensity of the original radiant energy component
involved in the image formation [37].

10




of heat is also produced. The region in the target where the X-rays and
heat are produced is called the focal spot. The angle formed by the
target surface and the direction of the centre X-ray is referred to as
the target angle.

The X-rays emitted by the focal spot are not all of one frequency
but constitute a complex spectrum made up of two different parts. There
is a continuous spectrum consisting of frequencies from a certain
maximum downwards, and upon this there is superimposed a line spectrum
consisting of a relatively small number of separate frequencies
[5, pp- 45-51].

The spatial distribution of X-rays is not uniform and depends on
the target thickness, material, and roughness, as well as on the applied
voltage between the cathode (filament) and the anode (target). The
intensity of the radiation tends to be greater in the direction of
movement of the electrons. However, for applied voltages in the 50-150 kV
range, used in diagnostic radiology, X-rays are emitted more or less
uniformly in all directions.

Many studies have been published about the characteristics of focal
spots in X-ray tubes [22]-[27]. The shape and size of focal spots have
been determined as well as their modulation transfer functions (MTF's),
both theoretically and experimentally. The MTF is the magnitude of the
Fourier transform of the point spread function (PSF) or impulse response
of the focal spot. The PSF is defined here as a pin-hole image of the
focal spot. Nevertheless, for mathematical simplicity many researchers
assume that the focal spot can be represented by a geometrical shape

(e.g. a square or a circle) with definite edges. In this case the MTF

=]
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of a focal spot is some form of a two-dimensional sampling function.
The radiation from outside the edges is referred to as off-focus
radiation. Real focal spots are not defined by sharp edges; instead
there is an edge gradient shaped like a Gaussian function. Indeed, it
has been stated in the literature [22], [25], [28], that the MTF of a
focal spot more resembles a Gaussian function rather than a sampling
function and that this approximation is better in certain directions
than others. This is a reasonable assumption because even if we had an
ideal point source of electrons, it would be very difficult to focus the
electron beam onto a single point in the target. Therefore, the impact
of the electrons and the subsequent emission of X-rays takes place in a
region of finite dimensions. A spatial Gaussian function seems a good
approximation to the spatial distribution of X-rays over that region.
When the source of electrons is of finite size, the distribution of
X-rays results in an image of the filament with the edges approximated
by Gaussian functions.

Since our purpose is not the design of radiologic systems but the
design of filters that will compensate for the degradations in existing
systems, we will assume that the output of the focal spot block, that
is, the distribution of X-rays emitted by the focal spot, can be measured.
Therefore, we will not consider any further the characteristics of the

first two blocks.




2.2.3 X-Ray Image Formation

The attenuation of X-rays with matter may be modelled by the
differential equation in (2.1), where I(x) is the intensity of a narrow
X-ray beam as a function of the distance x in the direction of propagation
and u(x)kis a total linear attenuation coefficient.

dI(x)

Ix +u(x) I(x) =0 (2.1)

The solution of (2.1) is given in (2.2).

K
[0 = 100) &) #O) @

(2.2)
X-rays propagate in straight lines. This fact controls the size,
shape, and position on the radiographic film of the shadow or image of
the various structures of the object being exposed.
Due to the diverging nature of the X-rays emitted by the focal
spot, the size of the shadow is different from that of the object casting
the shadow. The ratio of the size of the image to that of the object 1is
called the magnification. For a three-dimensional object, the magnific-
ation is a constant in a layer parallel to the film plane. If we denote
by d1 the distance from the focal spot to the ithllayer and by d2 the

distance from that layer to the film plane, the magnification for that

layer is given by
m, = —— (2.3)
We are next to study the effects of the finite size of the focal
spot.

The X-ray intensity distribution that reaches the imaging system

is a function of both the object and the X-ray intensity distribution
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in the focal spot. To maintain generality in our block diagram, we
model the interaction of X-rays with matter as a system with two inputs.

We denote by IoCxo,yo;x,y) the X-ray intensity emitted from the
point (xo,yo) in the focal spot toward the point (x,y) in the film plane.
The other input is denoted by uL(R) and corresponds to the spatial
distribution of absorption coefficients in the object. uL(Q) is defined
along a line L from (xo,yo) to (x,y).

The interaction between these two inputs can then be modelled by

the following integral equation:

-./I: uL(z) ds
I(x,y) =‘/]F‘S I(xgsygsxy) e dx_ dy (2.4)

whiéh is a generalization of (2.2) and is obtained by integrating over
the region of existence of the focal spot (denoted here by F.S.). The
integral in the exponential is along a line L defined by the point
(xo,yo) in the focal spot and the point (x,y) in the film plane. Since
this is a line in space, (2.4) can be used with any three-dimensional
object, in general.

The pragmatic approach to conventional radiographic image formation
systems has been dominant in past efforts in this field [37]; namely, a
linear space-invariant model is assumed, the thickness of the object is
neglected, and the point spread function is estimated by approximatiors.
The implications of (2.4) will be studied in detail in Section 2.3, where
the questions of linearity and space-invariance will be examined and some
simplifications will be made. Nevertheless, we must exphasize here that
the salient feature of (2.4), as well as of subsequent equations which

will be derived from (2.4), is that it shows what happens when X-rays
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are attenuated by three-dimensional objects, thus setting the basis for
the recovery and separation of the information which is projected on
the film. Other effects such as the inverse square law and scattered
radiation are not relevant here, because they do not contribute to
differentiate among layers. The inverse square law determines the
attenuation of the radiation due to its divergent nature and may be

modelled independently of the object and (2.4) if necessary.

The integrals in (2.4) can be approximated by summations. This
discretization is suitable for implementation in a digital computer and
is useful in performing simulations. For this purpose we coded the
routine XRAY in FORTRAN IV. The details are given in Appendix A.

Due to the finite size of the focal spot, the shadow image of a
point or edge in the object extends over a finite region on the film
plane. Each edge or shadow is composed of two parts, the umbra and the
penumbra or edge gradientf. These effects will be discussed further and
exploited in Chapter III.

Several researchers have investigated the removal of penumbras in
radiographs using optical signal processing techniques: Minkoff [30],

Krusos [31], and Trefler [32].

+ Umbra is defined as the zone of lucence formed on a film when a
radiopaque object intervenes between the film and a source emitting
X-rays. Penumbra, or more accurately edge gradient, is defined as the
gradation in density which occurs at the margin of any given radiological
image, delineated medially by the point of maximum image lucence and
laterally by the point of minimum image lucence [29].
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When X-rays interact with matter, they are not only attenuated in
intensity, but also they are scattered through a finite solid angle
tending to produce a hazy background in the image only indirectly related
to absorption coefficients in the object [33]. Therefore, we model this
secondary radiation as additive noise. The problem of estimating the
PSF due to radiation scattering and the realization of a compensating

filter using digital techniques has been studied by Hunt [34], [35].

2.2.4 Imaging System

The imaging system is the conversion process of an X-ray
image to a light one. X-rays, at the energy levels used in radiology,
have very poor capabilities for impressing film. Consequently,
additional devices, such as image intensifiers or screens, must be used.
The function of these devices is to create a large number of light
photons in the device output for each X-ray photon in the input. These
imaging devices introduce degradations which can be characterized by

their PSF's or their frequency responses.

The input to the imaging system 1s the X-ray intensity distribution
just before 1t enters a screen-film combination or an image intensifier

and the output is a film image or a television image, respectively.
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In addition to the 1ow—pa$s characteristics of the frequency resp-
onse of the imaging device, the main distortions in the recording
(film) or display (television monitor) of images are due to random noise
and nonlinearities. The source of noise in film is due to the finite
size and random distribution of the light-sensitive grains in the film
(film-grain noise). The main characteristic of this kind of noise 1is
that it appears to be multiplicative rather than additive [36], [377.
If the images are sampled somewhere in the process, nonlinearities can
be compensated for in a digital computer [37]. All these effects have

been studied in detail by several authors [36]-[40].

2.2.5 Restoration and Enhancement

Restoration and enhancement, which are not normally present
in conventional radiologic systems, are the principal objectives of this
research. Given the characteristics of all other blocks, we have to
design the restoration and enhancement methods that will improve the
final output of the whole system, i.e. the diagnosis.

Restoration refers to that part of the system that corrects for
degradations in other parts of the process. The design of the restor-
ation filter requires knowledge of the degradations in the system, that.
is the transfer functions of the previous blocks. The way this knowledge
is acquired may be represented in the block diagram by a feedforward path.

By enhancement we refer to the processing of images in general, to

17




present to the viewer (or subsequent machine) additional information or
insight into some factor concerning the pre-enhanced image. A compreh-
ensive survey of image enhancement techniques has been published by
Andrews [41]. It must be emphasized that the fidelity criterion of
enhancement is not attempting better object representation; it will
depend strongly on the type of pattern recognition process (PRP) used
and on the relevant features in the image. If the PRP is automated,
a mathematical criterion like the mean-square error will be in order;
but if the image is to be viewed by a human viewer, such as the
radiologist, then the psychophysics of vision and other human factors
must be taken into account [39], [42]. Therefore, the design of an
enhancement filter needs a feedback of the characteristics of the PRP
following it.

Enhancement techniques have been applied to the processing of

radiographs by Selzer [43], Hall [44], Hunt [45], and Hesse [46].

2.2.6 Pattern Recognition Process

This is the ultimate and most intelligent system block
in the whole process which results in the diagnosis.
The pattern recognition may be performed by an automated process,
a radiologist, or both in combination.
For a survey of automated PRP techniques for radiographs see for

example Hall [47].
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2.3 Point Spread Function of the System Block Representing the

X-Ray Image Formation

In this section we further study the significance of (2.4) from the
point of view of system theory. This part of the radiologic process is
the most critical one because it is here that a three-dimensional object
is projected into a two-dimensional radiograph. Depending upon the
characteristics of this projection the recovery of depth information
will or will not be possible.

In Section 2.2.3 we modelled the interaction of X-rays with matter
as a system with two inputs. Now we consider one of the inputs as
forming part of the system. The usual approach in existing work is to
consider the intensity distribution of the focal spot as the input to
the system and the object being X-rayed as belonging to the system.
Using this formulation the input to the system is known and the system
itself must be determined from a measurement of the output (system
identification problem). Since the input cannot be specified arbitrarily
and the object is three-dimensional, this model presents some problems.
We will work with a second system model where the input is passive and
the system is active, that is the focal spot belongs to the system and
the input is a passive distribution of absorption coefficients. The
problem now consists in finding the input, given the output and the
system PSF (input identification problem).

From (2.4) it is clear that the radiologic process is linear with
respect to IO and noniinear with respect to the attenuation coefficients p.
Since we consider the distribution of attenuation coefficients as the

input to the system, some assumptions have to be made to make the problem
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mathematically tractable using linear system theory (cf. Appendix A).

In our approach to tomographic restoration, the radiologic image is
to be processed by a filter which we assume will modify the image of
each layer independently of the others., This means that the system is
linearized by assuming that the exponential in (2.4) can be approximated
by the linear terms in its Taylor series expansion. The validity of
this assumption is based on how small the attenuation coefficients are
and is discussed in [48], where it is also suggested that a better
approximation may be obtained by writing u=uO+Au,’where B is the

‘"background" linear attenuation coefficient and Au represents the
changes in linear attenuation coefficient from o in the object.

Once the system is linearized it can be described by convolution
integrals if the system is also space-invariant. However, the radiologic
system is space-variant for several reasons such as the obliquity of the
X—rays’when they reach the film, the superposition of the images of the
layers in the object, the lack of parallelism of the focal spot and film
planes, and the change with direction of the X-ray intensity emitted from
the focal spot. The effect of the obliquity of the X-rays reaching the
film can be corrected for if the area of the film to be processed is
large, or it can be neglected if it small. In either case the error
committed is quite small because of the distances normally used in
diagnostip radiology, that is the focal spot to film distance is much

greater than the focal spot size, say 1000:1. The space-variance due to

the overlaying layers is avoided by dealing with one layer at a time;
the effects of overlaying layers are discussed in Chapter V. In the
remainder of this section we study separately the space-invariant and

space-variant approximations taking into consideration the other factors.

2.3.1 Space-Invariant Model

If the plane of the focal spot and the plane of the film were
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Figure 2.2. Comparison of impulse responses in the space-invariant model

parallel, the system would be space invariant. Indeed, it can be proved
that a translation of the unit-impulse input within a layer results in a
translation of the PSF. Also, a translation of the unit-impulse input

from one layer to another results in a similar PSF scaled in space (see
Figure 2.2). A derivation of the dependence of the shifts and scalings

on the position of the unit-impulse input follows.

Assume that the object is divided into very thin layers parallel to
the film plane. Let ui(xi,yi) be the two-dimensional distribution of

. .. . .th
absorption coefficients in the i

layer. The X-ray emitted from the

point (xo,yo) in the focal spot and reaching the film at the point (x,y)

intercepts the ith layer at a point (xi,yi).

This is illustrated in
Figure 2.3.

From the geometry of the system, these coordinates are
given in (2.5).
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Figure 2.3. Relationship between coordinates on different planes in the
space-invariant model.




X; = ———— * X (2.5a)
m,
i
Y=Ys
yi = ——— *Y, (2.5b)
my

where m. is the magnification for the ith layer as defined in (2.3).
Assuming space invariance, the focal spot X-ray intensity distribution
is a function of (xo,yo) only.

Under this conditions the integral in the exponential in (2.4) can
be approximated by a summation which results in a product of exponentials

as follows:

I(x,y) =ﬂ Io(xo,yo) I E; (x;5¥;) dx dyo (2.6)
F.S. i
where
E; (xy5y;) = expl-u, (x,,y)) AL} (2.7)

represents a two-dimensional distribution of total attenuation factors
corresponding to the ith layer. Since X-rays do not cross any layer
perpendicularly (except the centre ray), the apparent thickness AL will
depend on the position in the field. We neglect this effect and assume
A% constant or else the variations can be included in the absorption
coefficients thus becoming attenuation coefficients.

With the assumption of linearity, as previously discussed, the product
of attenuation factors in (2.6) becomes a summation and the PSF of each
layer can be determined independently of the others. The system PSF of
the ith layer is found by letting the input to be a unit-impulse located
at the point (xio’yio) in the ith layer. Physically this is the same as

a thin layer opaque to X-rays with a pin-hole at the point (xio,yio).




h(x,y) =J[Z:s To(x sy ) 8(x =%y Y=y o) dxg dy,

1 MiXi07% MiYi0™Y
° m.-1 m,-1

1 1

4 4

d1 dl
IO D (mixio-x) s T (ml}’lo')’) (2°8) )
From (2.8) we conclude that the PSF of each layer is spatially
scaled by the factor —dl/dz, which is a constant for a given layer,
and is shifted depending upon the position of the unit-impulse within
each layer.
Thus, the PSF of the ith layer at the origin is
d1 d1
h(Xs)’)=I - X , - —Y (2°9)
o} o}
dz

d;

The PSF anywhere else within the same layer can be found by

shifting the PSF at the origin as follows:

d.+d d.+d
_ 1 "2 1 2
hix,y) = ho (x - X, s Y T yio) (2.10)

4 4

2.3.2 Space-Variant Model

A radiologic process is space-variant for the reasons pre-
viously mentioned. The following two are considered here:
1) The intensity of the X-rays emitted from the focal spot is
different in each direction.

2) The film plane is not parallel to the plane of the focal spot.

A solution to the first problem could be to divide the X-ray image
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Figure 2.4. Comparison of impulse responses in the space-variant model.

into rectangular sections and assume a space-invariant PSF within each
section. The PSF would be different from section to section. This

solution seems to be the best unless a mathematical relationship between

intensity and direction can be determined. In most cases, as we already

mentioned in Section 2.2.2, the intensity is approximately the same in

all directions, so that this cause of space-variance can usually be

ignored.
The effect of the second reason is illustrated in Figure 2.4, where

the focal spot and film planes are not parallel. It can be seen that

the PSF has a different size and shape depending on the position of the

pin-hole, even within the same layer. A mathematical formulation of the

space-variant PSF can be derived from geometric considerations [22] as a

function of the PSF at the origin.




If hi(x,y) is the PSF at the origin of the ith layer, the PSF at an
arbitrary position within the same layer can be expressed as follows [22]

(see Figure 2.5):

hy J(xy) = hy (x+kykoy , Koy) (2.11)
where
xiotanu
k1 = tany = (2.12a)
d1+yiotanu
y. tana d +y. tanao
k2 = 1 + tana tanR = 1 + 10 = 1 1o (2.12b)

4 Y
The angle a of the focal spot is a constant that depends only on
the system. The other parameter in the previous equations is dl’ the
distance from the focal spot to the layer concerned.
Making a substitution of variables in (2.11) we obtain an expression
in terms of coordinates rather than angles. The result is given in
(2.13).

h(X’y;xio’yio

A =
) & hy (xy) = hy(xvkyx, o y*kyys ) (2.13)
where k=(tana)/d1 is a constant which depends solely on the system and
the layer concerned.

If the intensity also changes with direction and we denote this

change by Iio(xio’yio) we have the following resglt.

h(x,y5x; 5y = 1 0(X00Y50) hy (xvkyxg O yekyy, ) (2.14)

Here we have assumed that the shape of the PSF is the same
everywhere, differing only in spatial and amplitude scalings. This
implies that the rate of change of X-ray intensity with direction is

the same everywhere in the focal spot. Without this assumption the only
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way to accurately characterize the system would be by measuring

h(x,y;xio,yio) everywhere, thus making the problem rather intractable+

A solution was devised to convert the space-variant problem into a

space-invariant one and the results are given in the next section.

2.4 Conversion of the Space-Variant Model into a Space-Invariant One

There is a simple way to correct for the space variability of the
radiologic process in a digital computer. As shown in Figure 2.6 the
radiologic image can be sampled uniformly and then a new image is
calculated by interpolation. This new image is the one that would
correspond to a plane parallel to the focal spot; therefore it has
space-invariant properties. The new image can be calculated anywhere
in the X-ray field. In order to minimize size distortions we have chosen
the plane that, being parallel to the focal spot, passes through the
intersection of the centre ray and the film plane. With this appfoach
the reconstruction of the object is made on layers parallel to the focal
spot. The information required for the conversion is the following:
the angle of the focal spot, the focal spot to film distance, and the
orientation of the film.

The relationships between the coordinates (x,y) over the film
plane in the space-variant system and the coordinates (R,y) over a plane
parallel to the focal spot can easily derived by geometric considerations.

A A A A
Indeed, referring to Figure 2.7, since FBO ~ FAE and FOD ~ FEC,

+ We also derived an expression for (2.13) in polar coordinates and
tried to use the Mellin transform to take care of the different scalings.
The results are not reproduced here because there did not seem to be any
apparent advantage in using polar coordinates.
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Figure 2.6. Conversion of the space-variant model into a space-invariant
one.
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Figure 2.7. Relationship between the coordinates on the film plane in
the space-variant model and in the equivalent space-
invariant model.




we have:
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Therefore, the intensity distribution I(%,9) of an equivalent
space-invariant system can be expressed as a function of the intensity
distribution I(x,y) of the space-variant system as follows:

1,9 = 1(x,y) = 1( d , 4 cosa g ) (2.15)

d-¢ sina d-¢ sina

In a practical case (2.15) would be applied as follows: The radio-
graph is either sampled at non-uniform intervals as shown in (2.15) or
a néw set of samples is obtained by interpolating a uniformly sampled
radiograph. This sampling rate should be sufficiently high so that the
interpolating error is negligible. The new space-invariant intensity
distribution f(%,;) is used and processed instead of I(x,y) but taking
into account the new geometry of the system, that is the focal spot to
plane ;,§ distance.

It must be emphasized that this transformation gives a hypothetical
image which does not really exist in the actual system but which results
in a space-invariant system without loss of information. Indeed, if we
wanted to calculate the trﬁe intensity in the actual system when the

radiation crosses the plane X,y parallel to the focal spot, derived from




the intensity distribution on the plane x,y, the inverse square law
“correction factor should be included to take into account the diverging
nature of X-rays. However if we were to do that we would introduce
another source of space variance due to the obliquity of the X-rays on
impact over the plane §,§ and therefore the resulting image would be
distorted more than it would be corrected.

When the processed film area is small the transformation (2.15) may
not be necessary because the variations of the impulse response within
small areas is relatively small. A simple rule can be derived from (2.13)
to determine the maximum percent variation V of the extent of the impulse
response in the y-direction:

vy, - y,) sina

2 1 o

V = - 100%
d(cosa) + y,sina

where Y1 and y, are the ordinates of the film-area edges which are per-

pendicular to the y-axis. For example, if o = 70°, d = 1000 mm, Y1z 50 mm
and Yo 100 mm, we obtain V = 12% only. On the other hand if we consider
a larger area, say yi= 50 mm and Yo= 300 mm, we obtain V = 60%; hence, in

this case some correction would help.




Chapter III

A TOMOGRAPHIC FILTRATION PROCESS

3.1 Introduction

In this chapter we are going to establish the basis for the recov-
ery of three-dimensional information from two-dimensional radiographs.

Rather than using special X-ray hardware in this approach, conven-
tional radiographs will be processed using standard signal processing
techniques. The utilization of conventional X-ray systems leads us to
the use of the model developed in Chapter II.

When the object which can be visualized as a three-dimensional dis-
tribution of absorption coefficients is projected in a radiologic system,

several types of transformations are introduced as discussed in the previous

chapter. There is only one however which is depth dependent, namely the
one due to the finite size of the focal spot. Indeed, if the source of
X-rays were a perfect point source no debth information recovery would
be possible at all from a single radiograph.

Making use of the depth-dependent focal-spot blur, our solution to
the problem will be developed from two points of view; first, an analogy
with standard tomographic techniques will be considered and second, a
deblurring filtering process will be studied. Theoretical analyses in
both the épace and frequency domains will be used to evaluate the perfo-
rmance of the process. Finally, the effects of noise and the problem of
determining the system transfer function in a practical application will
be briefly consiqered. The implementation and practical evaluation of

the process will be deferred to Chapter V.




3.2 Development of a Tomographic Filtration Process

3.2.1 Analogy with standard tomography

Standard tomographic techniques produce a tomogram by moving
a point-like X-ray source and the recording film in a coupled manner, so
that during the exposure the parts of the object lying in one specific
plane parallel to the film plane are always projected on the same place
on the film [1]. The X-ray shadows of the other parts of the object will
move in relation to the film. Thus only a layer of a few millimeters of
thickness in a predefined depth of the body is imaged sharply, whereas
structures on both sides of this layer are blurred. The layer whose
image is in focus is referred to as the plane of cut or tomographic
layer. As shown in Figure 3.1, by moving the film from OA to OB in
synchronism with the point source Io(x), which moves from A to B, we
obtain the point O projected always on the same place.

A tomographic filtration process (TFP) must produce a focussing
effect similar to that of standard tomography; but with no moving parts.
In a TFP, instead of moving the X-ray tube, the finite size of the focal
spot is used to advantage, and instead of moving the film, a filter is
used to process a conventional radiograph. To see that a TFP is indeed
analogous to a standard tomographic system in miniature, as far as the
tomographic layer is concerned, consider the following model.

A focal spot is composed of a finite ordering of point sources.

For example, the surface of a 300 micron square focal spot is composed
of approximately 900-108 atoms of tungsten, each of which can act, if

struck by an electron, as a true point source of X-rays [29]. Each
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Figure 3.1. Simplified diagram of image formation in standard tomography.
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emitting source produces its own image at a slightly different point in
the image plane. The shadow from all these point sources add up to form
the observed image; overlapping occurs throughout the entire image but
will only be discernible at the edges where an intensity gradient is
formed.

Since this system is linear we can apply superposition and make an
equivalent focal spot by moving a true point source of X-rays all over
a region which includes the real focal spot. In general the intensity
of this ideal point source will change during its movement; because the
X-ray intensity distribution over the focal spot is not uniform. With
this model, (2.4) is still valid.

The movement of this point source is analogous to the movement of an
X-ray tube in standard tomography. Since in conventional radiology the
film does not move, the images of all the layers are blurred.

Therefore, in order to convert a radiograph into a tomogram we will
pass the radiographic image through a filter that will produce on the
image of the tomographic layer an effect equivalent to the motion of the
film in standard tomography. Filters that produce a seleétive deblurring
on a conventional radiograph will be referred to as tomographic filters.
Mathematical details that clarify the analogy further are given in Appendix A.

The effect of overlaying layers is not the same in standard tomo=-
graphy as in the TFP. In standard tomography an intentional blur of
the out of focus layers is produced, thle the tomographic layer 1is
kept in focus. On the other hand, in a conventional radiograph all the
layers are blurred, although to a much lesser extent, and the tomogra-

phic filter deblurs the image of the tomographic layer.




3.2.2 Tomographic Filters

The mathematical characteristics of tomographic filters are
derived here. The objective is to find a filter such that in cascade
with the transfer function for the tomographic layer results in an
overall transfer function equal to a constant for that layer. In Sec-
tion 2.3 it was discussed how the contributions from the various layers
to the total X-ray attenuation (that is, the X-ray image formation) can
be approximated by an additive process. This is achieved by linearizing
the exponential in (2.4), so that the effects of the various layers are
separated and we can focus on a single layer at a time. With this
linearization the problems of space-variance due to the object itself
are also eliminated because the system is space-invariant when a single
layer is considered (cf. Appendix A).

The overall transfer function for each of the overlaying layers
should ideally be zero, however using a single radiograph this is not
possible as it will be seen later. Due to these limitations in the
system, the quality of the results will depend strongly on the charac-
teristics of the object being exposed, such as the absorptions and
spectra of the various layers, to be discussed in Chapter V.

In the following derivation of the transfer function of a tomographic
filter we also assume that the PSF for the tomographic layer 1s known.
The PSF for each layer of a three-dimensional object was derived in
Section 2.3 as a function of the X-ray intensity distribution in the
focal spot. The PSF's of different layers differ by a scaling factor

only. Since the system is linearized, the image of a layer can be




written as follows if the PSF is space-variant:

g(x,y) =dl7ﬁh(x,y;a,8) f(a,B) do dB (3.1)

where f(a,B) is the two-dimensional distribution of attenuation factors
in the layer, h(x,y;o,B) is the space-variant PSF of that layer, and
g(x,y) is the resultant image+. Since the object is three-dimensional,
g(x,y) represents the superposition of many layers; however we are
interested in selecting one layer at a time only.

If the system is space-invariant or is converted into one by the
technique of Section 2.4, then the integrals in (3.1) Become convolution

integrals.
g(x,y) =ffh(x-a,y-=s> £(0,8) do dB

= h(x,y) » £(x,y) (3.2)

Using the convolution property of the two-dimensional Fourier
transform (see Table B.1), the convolution in (3.2) results in a product

in the frequency domain.

G(fx,fy) = H(fx,fy) . F(fx,fy) (3.3)

To recover F(fx,fy) from G(fx,fy) the obvious technique is to
inverse filter the radiologic image by multiplying G(fx,fy) by H—l(fx,fy)
as indicated in (3.4).

G(fx,fy)

F(f ,f) = ——— (3.4)
Y H(ELE) >

+ Unless otherwise specified the limits of integration are always
from -o t0 .




The filtered image can then be obtained by finding the inverse two-
dimensional Fourier transform of F(fx,fy). Unfortunately H(fx,fy) may
have zeros and G(fx,fy) is usually corrupted by noise. Thus the filtered
image will include a large amount of noise at spatial frequencies in the
neighbofhood of a zero of H(fx,fy). Nevertheless, in many cases of
interest these zeros are located at frequencies which are higher than
those where the relevant physiological information is contained. In
these cases it is sufficient to restore up to the first zero and reject
the band of higher frequencies.

When it is necessary to restore ffequency bands with zeros in the
transfer function, the modifications suggested in the literature to
counteract the drawbacks of ideal inverse filtering are all ad hoec and
intuitive [52]. Before we describe our method some of the alternatives
available are reviewed briefly.

One of the earliest techniques that we have found in the literature
to improve the results of inverse filtering for image processing was
Harris' suggestion [52],[91],[92] of multiplying (3.3) by a function
Ho(fx,fy) before dividing by H(fx,fy). Thus

~ f
S ey SO IHELE) NG (£ E)
x*y H(E T ) HEE)

where the noise component N(fx,fy) which corrupts G(fx,fy) is explicitly
shown in this equation. By choosing HO to be zero over the region of the
fx,fy plane where G is dominated by N we can reduce high-frequency noise.
By choosing HO/H to be finite wherever H is zéro the problem with infinities

can be eliminated. The price paid is that F is no longer a noisy version

of F but a noisy version of F blurred through the filter HO. The require-
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ments imposed on HO are intuitively reasonable. However, there is a
noncountable infinity of functions that satisfy these requirements and
we must arbitrarily choose one [52].

Slepian [93],[94] notes that some ad %oc scheme for assigning a
finite value at the pole positions of the inverse filter must be made
and that just what these modified filters do to picture quality is not
easy to analyze. He assumes that the image is of finite extent and
considers a filter which restores correctly over the inverval spanned
by the smeared image and gives an arbitrary output elsewhere (zero on
one side and uninterpretable values on the other side).

Cutrona and Hall [95] exploit the same degree of freedom as Slepian
but in a different manner and they arrive at a slight generalization of
Slepian's results. They compare three classes of filtersl The first
class is basically inverse filtering attempting perfect reconstruction
~in the interval of the image and zero elsewhere. The second filter is
similar but produces a nonzero output beyond the image interval (this
essentially is Slepian's filter). The third class of filters correct
the original blurring but giving a smeared version of the output of
the second filter with smearing length set by the resolution required.

Brown 2t al. [96] have investigated replacing the inverse function
beyond a certain frequency, say 1 cycle/inch, by a roll-off function.
They have tested the Dolph-Chebyshev function. By 'cutting-off" the
filter function gradually instead of abruptly the ripples in the filtered
image are reduced. |

Dance et al. [97] have investigated three modifications of the ideal

inverse function, each corresponding to deconvolution for values of the
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inverse filter magnitude response lower than a certain limit but being
modified for values greater than that limit. The first method set terms
above that limit to zero, the second gave terms above the 1limit a constant
value but retained the phase, and the third was a compromise between the
first two and made the inverse filter proportional to the transfer function
of the degradation to correct.

It is_interesting to note that all these techniques are quite similar
and that no comparative assessment is available, but only subjective
estimates in specific cases. Consequently, since our goal is not the de-
termination of the best method of inverse filtering but to test the feasi-
bility of tomographic filtering, we propose a simple technique which provides
a means for hard-limiting the magnitude response of the inverse filter and
cutting off the high frequencies dominated by noise. Both the hard-limit
and cutoff frequency can be specified by the user. The astute reader will

noteits similarity to the techniques previously reviewed.

Suppose that H = a+Jjb is the system transfer function for the
tomographic layer. H, a, and b are functions of the spatial frequency
(f‘,fy) and j is the imaginary operator.

The magnitude response of the inverse filter is

[ I S (3.5)

e

and the phase response

1]

arc tan ;§L (3.6)

b o o

The transfer function of the inverse filter with hard-limited

magnitude response is expressed as:
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H'=c+3d (3.7)
with the constraint

c +d =sh (3.8)
where h2 is the hard limit imposed on the magnitude response and c¢ and

d are given by

c = SR — and d = — b for 1 < h (3.9a)
2 2 2 2 2
a + b a + b 2. 2
a +b
ah -bh
c = SRR T and d = S for _ > hl (3.9b)
a? + b’ a® + b’ a® + b’
¢c=h and d =0 for a? +b> = 0 (3.99)

Equations (3.9) are consistent with (3.6) and (3.8); that is the
phase response is preserved and the dymamic range of the magnitude
response can be controlled with the parameter h2 to prevent noise
amplification and/or overflow of computer registers. In a digital
computer all these operations are straightforward and we have coded
them in the routine INVFHL, given in Appendix C. Examples of applica-
tions are given in Chapter V. It should be noted that under the
transformations (3.9) a real PSF remains real, and an even PSF remains
even.

In many cases it is convenient to assume a Gaussian shape for the
system transfer function as pointed out in Section 2.2.2. The magnitude .
response of the tomographic filter then becomes an inverse Gaussian
curve, which is readily implemented in a digital computer.

Since the system transfer function usually has a low-pass characte-

ristic, the inverse filter has a high-pass characteristic. Therefore
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it is convenient to cascade the inverse filter with a low-pass filter to
reduce the noise at high frequencies where the gain of the inverse filter
is greatest. The choice of the cutoff frequency of the low-pass filter
is a trade-off between the desired resolution and noise.

More sophisticated methods for overcoming the problems of inverse
filtering will be considered in Section 3.4. In the next section we
study the effectiveness of tomographic filters at different object

depths.

3.3 Theoretical Evaluation of Tomographic Filters

A tomographic filter deblurs the image of the tomographic layer
while leaving the images of all other layers blurred. After filtering
the radiograph, the characteristics and extent of the blur on
the image of each layer depends on the distance from that layer to the
tomographic layer and the distance from the tomographic layer to the
focal spot and to the film plane. In both the space-domain and
frequency-domain analyses a one-dimensional model is considered for

simplicity. The extension to two dimensions is straightforward.

3.3.1 Space-Domain Analysis

Suppose that the tomographic layer is at a distance d1 from
the focal spot and at a distance d2 from the film plane. If O is a
point on the tomographic layer, its image on the film extends over a
distance U as shown in Figure 3.2. This blur U 1s the one that we
want to eliminate. Here we define blur as the extent of the image of a
point or edge due to the finite size of the focal spot. Ali other blurs

corresponding to other layers, such as the blur V of the point X and the
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Figure 3.2. Blur formation in the radiologic process.
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blur V' of the point X', differ in size and therefore cannot be eliminated
simultaneously. An indication of the differential blur that will remain

after processing can be expressed as

d,+t d (d1+d2) t
lV_U' = |S- -S> = 5 |j—— (310)
d,-t d (dl—t) dl

where s 1is the size of the focal spot and t 1is the distance from a
layer to the tomographic layer. We see that the tomographic blur [V—U]
is proportional to the size of the focal spot. Since a typical size for
the focal spot is of the order of 2 mm. while the movement of an X-ray
source in standard tomography is of the order of 500 mm. we infer that
the results of a TFP cannot be as good as those of standard tomography.
Nevertheless, the purpose of a TFP is to improve a radiograph with
respect to three-dimensional information and not to pro&uce a complete
and accurate three-dimensional reconstruction for which better techniques
exist [2], [3]. These facts will be demonstrated experimentally in
Chapter V.

Equation (3.10) is shown as an indication only and does not include
the shape of the X-ray intensity distribution. A better space-domain
characteriiation is provided by the overall impulse response of the TFP.

Suppose a focal spot with a Gaussian X-ray intensity distribution,
namely

OX2

Io(x) = e

If the focal spot to film distance is d, the PSF for a layer {the

tomographic layer in this analysis) at a distance dl from the focal spot




and d2 from the film is

d 2
hp(x) = exp g -0 (Ei) ng

and the PSF for another layer at a distance t from the tomographic layer,

positive on the focal spot side and negative on the film side, is

d,-t 2
h{(x) = exp % -g ( > x2 %
d,+t

2

The Fourier transforms (cf. Appendix B) of these two PSF's are,

respectively:

and

Thus, if the transfer function of the tomographic filter is H%l(f),

the overall transfer function for the other layer is

d+t d S /d+t V2 [fd\?
d -t d, d,-t d,

For t=0 this transfer function is identically equal to one, as

expected. The IDFT (cf. Appendix B) was used to determine the
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corresponding overall impulse responses for ¢=2, d=1000 mm., d1=500 mm.,
-1 < f <1 cycles/mm., sampling interval=1/128 cycles/mm., and several
values of t (in mm.) as indicated with the plots in Figure 3.3. The
overall impulse response for the tomographic layer is obviously an
impulse and is not shown. It is readily seen in Figure 3.3 (a)~(d)
that between the plane of cut and the focal spot the impulse response is
a Gaussian function whose size increases when the distance to the plane
of cut increases. On the other hand between the plane of cut and the
film, see Figure 3.3 (e)-(h), the impulse response contains sidelobes
which increase with the distance to the tomographic layer. In general,
the wider the impulse responses and the greater the sidelobes, the better
the contrast between the tomographic layer and the overlaying layers.
However, the ripples in the impulse responses for the layers on the fllm
side may introduce artifacts which might mask structures in the other layers.

The reason for the distinctive nature of the impulses responses on
each side of the tomographic layer is very simple. On the focal spot
side (t>0) the transfer function is a Gaussian function whose inverse
tfansform is another Gaussian function, Figure 3.3 (a)-(d). On the film
side (t<0), however, the transfer function is an .nverse Gaussian function
which does not have an inverse transform. It is necessary to truncate
this ideal transfer function with a frequency-domain window (that is,
a low-pass filter) which introduces the ripples in the space-domain,
Figure 3.3 (e)-(h). We have used here a rectangular window (that is, an
ideal low-pass filter) with a passband from -1 to 1 cycles/mm.

The analysis presented here could also be applied to investigate the

effect of a time or space scaling error in any inverse filtering problem.
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Figure 3.3. (a)-(h) Overall impulse responses with a Gaussian focal spot.
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3.3.2 Frequency-Domain Analysis

Ideally a tomographic filter should have a frequency response
such that in combination with the transfer function of the radiologic
system, the resulting overall transfer function would be equal to a
constant for the tomographic layer and equal to zero everywhere else.

In practice, the second condition cannot be met, not even closely. It is
the purpose of this analysis to investigate the overall frequency resp-
onse at different depths.

The overall transfer function for a particular layer is equal to

H/H where H and Ht represent the system transfer functions for

t’
that layer and the tomographic layer, respectively. In this example we

assume that an ideal inverse filter is used. Evidently, for the

tomographic layer, H/H 1. The form of H/Ht for other layers is

t
shown in Figure 3.4, for a focal spot with uniform intensity distribution.
In Figure 3.5 we show an enlargement of the low-frequency band. Transfer
functions for layers on both sides of the plane of cut are shown together
for comparison. It is clear that the tomographic filter acts as a low-
pass filter for layers between the plane of cut and the focal spot, and
as a high-pass filter for layers between the plane of cut and the film.

To fully understand the effects of the process on different layers
we must also consider the characteristics of the spectrum of the
projected object. Since different layers suffer different magnifications
during expoéure, the corresponding two-dimensional Fourier transforms of
their shadow images are scaled accordingly (see Table B.1). Assuming

that each layer has approximately the same spectrum, the relative scalings

due to magnification are shown in Figure 3.6.
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Figure 3.4. Overall frequency response (in dB) of the TFP for several
layers. Layers far away from the plane of cut: (a) film
side, (b) focal spot side. Layers close to the plane of
cut: (¢) film side, (d) focal spot side.
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Figure 3.5. Comparison of the overall frequency responses in the low-
frequency region for layers on both sides of the plane of

cut.
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Figure 3.6. Scaling of the spectra of the images of different layers.
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These different scalings of the shadow images of the layers in the
object is what makes the processing of radiographs interesting. For
example, in Section 3.2.2 it is recommended to cascade the inverse filter
with a low-pass filter to reduce the noise at high-frequencies. If the
cutoff frequency of this filter is within the range of frequencies of
interest in the image, it will have a greater effect on the layers closer
to the film, which may result in an enhancement of the images of the layers
closer to the focal spot.

The previous analyses will help in the interpretations of the experi-

ments in Chapter V, where these issues will be further discussed.

3.4 Effects of Noise

The different sources of noise in the radiologic process were
discussed briefly in Section 2.2. The inverse filtering techniques
discussed previously do not take into account noise quantitatively.

The presence of noise limits the resolution of the restoration. Since
some sources of noise are additive and others multiplicative, they are
better treated separately. Cole [49] has suggested a method where the
multiplicative noise is removed first with a '"denoising system' in the
density domain followed by a deblurring system which also takes care of
the additive noise in the intensity domain.

The presence of noise is handled differently by various filter
structures which differ in the fidelity criterion on which the restoration
is based. The existing filter structures [8], [37], [49]-[51], most

closely related to inverse filtering can be represented by (3.11).

1 a H(fx,fy) l-a
Hc(fx,fy) = > (3.11)
° H(E . £,) [H(ELE ) [T+ Y C(ELE)

ul
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Table 3.1. Parameters for a family of restoration filters.

Type of filter a C(fx,fy) Y
Ideal inverse 1 - -
Wiener 0 @R(fx,fy) 1
Constrained least-squares 0 C (fx,fy) Y
Geometrical mean a ¢ _(f ,f) 1
R*"x’7y
Homomorphic 1/2 ®R(fx,fy) 1
a aggressiveness
@R(fx,fy) ratio of the power spectrum of the noise and the

power spectrum of the image.

Y constant

where the values of a, C(fx,fy), and v for different filters are
summarized in Table 3.1. For +vy=1, (3.11) constitutes a family of
filters with parameter 'a'" that Cole [49] defines as the
"aggressiveness'" of the filter.

Thus, the inverse filter is fhe most aggressive filter and the
Wiener filter is the least aggressive filter. The performance of all
these filters in the presence of noise has been compared [49], [50], and
homomorphic filters produced the restorations with the best visual
quality. From (3.11) and Table 3.1 it is seen that the homomorphic

filter is the geometric mean between the Wiener filter and the ideal

inverse filter. The homomorphic filter is also referred to as the power




spectrum equalization filter because it constrains [Hg(fx,fy)l such that
the power spectrum of the restored image is equal to that of the original,
undegraded image.

Many other restoration techniques have been devised. In particular,
some good results have been obtained with nonlinear iterative techniques
[10] and numerical analysis techniques [51]; however their implementation

is slow and presents some data management problems.

Human visual system considerations on the restoration criteria

One of the important processing limitations of the human visual
system is its inability to deconvolve images [52]. The restoration of
images attempts to solve this problem by producing an estimate of an
original image, using all the available a priori information about the
degradations that the original image has suffered. The lack of total
knowledge of the fidelity criteria of the human visual system leaves the
criteria by which the goodness of the estimate is to be judged,
unspecified. For this reason it is not clear what is the optimum trade-
off between resolution and noise.

Stockham [53] has reviewed a specific relationship between some of
the current knowledge and thought concerning human vision and the
problem of controlling subjective distortion in processed images.

A peculiar characteristic of the human visual process, usually
forgotten, is its memory. Indeed, the effect of an image on a human
observer depends strongly on his experience in visual interpretation and
conclusions from previous views which are stored in the brain. This

fact makes the visual fidelity criteria totally variable in space and




time; although there are many evident constraints. The variability in
space refers to the subjective differences from one human observer to
another and the variability in time refers to the life of each human
observer. Thus, for example, the reaction to processed radiographs by
a radiologist, well-trained with conventional radiographs, may be
unfavourable.

To conclude this section, we summarize some well known rudimentary
facts on human vision: d

1) The human observer is more sensitive to some spatial frequencies
than others.

2) The human observer is more sensitive to intensity errors in grey
areas than in white areas.

3) The mean square error criterion is in very poor accord with
subjective evaluation,.

4) The human visual system is not linear; although it seems that
after an initial nonlinear transformation, the remainder of the visual
system may be considered linear over a moderate range of intensities.

5) The number of grey levels discernible by the human eye is about

20; or even less if the signal-to-noise ratio is small.

3.5 Determination of the System Transfer Function

In Chapter II the PSF of éach layer was derived as a function of
the X-ray intensity distribution in the focal spot. Many techniques
have been developed for accurate focal spot measurements for quality
control purposes [22]-[29], [54]. Unfortunately, most of these techniques

are slow, cumbersome, and difficult to apply. Furthermore, the




characteristics of focal spots may change with time, exposure conditions
tube voltage and current, etc.; so that if they had to be measured every
time a new radiograph is taken, restorations would be totally impractical.
An intermediate solution may consist of using as much a priori informa-
tion as possible from occasional pin-hole images of the focal spot and
supplementing that data with information derived directly from the
radiograph itself whenever necessary. Indeed, in most cases of image
restoration, sufficient information exists in a biurred image to attempt
"blind deconvolution" [49], [55]. The magnitude characteristics of the
degradation can be estimated without any a priori knowledge [49]. The
phase characteristics are much more difficult to estimate and an
assumption about the possible types of blur is necessary [55], [sel.

These blur estimation techniques assume that the image can be
represented as a random field with the properties of stationarity and
ergodicity; and also, that the blurring process is space-invariant.

If these conditions are not met then estimation is not possible. In
addition, it is necessary to know the power spectrum of a prototype
unblurred image.

To our knowledge, nobody has applied these blur estimation
techniques to the restoration of radiographs yet. The apparent problem
is that in the radiologic process there are many blurs of different
sizes involved, one for each layer. Application of purely 'blind
deconvolution' techniques to radiographs does not seem possible at
present. Nevertheless, with some a priori knowledge of the focal-spot
characteristics they may be used to advantage to estimate some varying

parameters (refer to example in Appendix A, Section A.7).




Some analytical and graphical examples of typical PSF's and their

MTF's are shown:

1) Uniform rectangular shape (separable)

1.0 -A<x<A and -B=y=<B

h(x,y) =
0.0 otherwise

2) Uniform circular shape

1.0 Vx +y <R

hix,y) =
0.0 otherwise

3) Gaussian (separable)
h(x,y) = exp{—lez-ozyz}

4) Double-peaked Gaussian

h(x,y) = exp{—ol(x—xo)2+ozy2} +C exp{-oa(x+xo)2+oqy2}

(3.12)

(3.13)

(3.14)

(3.15)

Perspective plots of these functions and their MTF's (in dB) are

shown in Figures 3.7 to 3.10, respectively. The Gaussian and double-

peaked Gaussian X-ray intensity distributions are more realistic than

the uniform ones.

Actual PSF's were obtained using the pin-hole method and the X-ray

equipment of the Radiological Research Laboratories, University of

Toronto. Contour and perspective plots of these PSF's and their squared

MTF's are shown in Figures 3.11 and 3.12. The nominal sizes of the

two focal spots involved are 1 mm. and 2 mm.

The X-ray film was




(a) (b)

Figure 3.7. Example of a uniform-square focal spot. (a) PSF. (b) MTF
(in dB).
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(a) (b)

Figure 3.8. Example of a uniform-circular focal spot. (a) PSF. (b) MTF
(in dB).




(a) (b)

Figure 3.9. Example of a Gaussian focal spot. (a) PSF (b) MTF (in dB).

(a) (b)

Figure 3.10. Example of a twin-peaked Gaussian focal spot. (a) PSF.
(b) MTF (in dB).
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Figure 3.11. Actual focal spot of 1 mm.
(b) Squared MTF.



(b)

(a) PSF.

Figure 3.12. Actual focal spot of 2 mm. nominal size.

(b) Squared MTF.
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digitized using the equipment described in Appendix D.
As it will be shown later, it is convenient to approximate the PSF
by a separable function to save computer memory in the design of a
tomographic filter.
We have chosen to do the approximation in the frequency domain as
follows. Denote the PSF by h(x,y) and its two-dimensional Fourier

transform by H(fx,fy). Then define a separable PSF hs(x,y) as

h,(6,y) = By () hy(y) - (3.16)

where
hy (x) = Fla e & FTHEGE,, 0 (3.17)
hy(y) = ﬂ"l{ﬁz(fy)} & 7'1{H(o,fy)} (3.18)

Thus the separable two-dimensional Fourier transform of hs(x,y) is
Hs(fx,fy) = Hl(fx).Hz(fy) = H(fX,O)°H(O,fy) (3.19)
According to the projection-slice theorem (see Appendix B), this
approximation keeps the projections of the PSF along the x-axis and y-
axis invariant. This results also in a further advantage, namely a
smoothing of the PSF.
The results of this approximation on the PSF's of Figures 3.1l and

3.12 are shown in Figure 3.13 and 3.14, respectively.
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Figure 3.14. Approximation of the focal spot in Figure 3.12 by a

(b) Squared MTF.

(a) PSE.

separable function.
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Chapter IV

DESIGN TECHNIQUES FOR TWO-DIMENSIONAL DIGITAL FILTERS

4.1 Introduction

In the previous chapter the concept of a tomographic filtration
process was developed. However, very little was said about the synthesis
of tomographic filters in practical applications. A TFP can be implem-
ented optically or digitally. The digital processing of two-dimensional
signals offers the following advantages:

1) Flexibility: Digital computers can be used to perform linear
operations as well as nonlinear operations. Intensity images or density
images can be processed. Magnitude and phase filters are readily
implemented. The filter characteristics can be changed in an interactive
mode (real time) with a dedicated computer or terminal.

2) Capacity and speed: The main elements of an optical system such
as storage media (film) and parallel processing capabilities result in
an enormous capacity and speed. However, experiments in image processing
are difficult and time-consuming to set up. The time for developing film
must also be considered. Therefore, the throughput using a dedicated
digital computer for image processing is usually faster than that of an
optical processor, even if the processing speed of the former 1is
considerably slower. With digital systems the result can be displayed
in real time on a television monitor.

3) Accuracy: In an optical system there are many sources of error
due to imperfect components and alignment. In digital processing the

accuracy is only limited by the cost of the computer processing and the

(@3}
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precision of the image scanners being used to get the pictures in and
out of the computer.

The main disadvantage of using a computer for image processing may
be the cost. This is especially true when the required resolution and
image size produce large arrays.

In this chapter we present the digital signal processing tools that

will be used in the experiments in Chapter V.

4.2 Classification of Two-Dimensional Digital Filters

Two-dimensional digital filters can be classified in terms of their
frequency response, impulse response, mathematical form of the transfer
function, and the type of implementation.

The frequency response of a two-dimensional digital filter may have
a low-pass, band-pass or high-pass characteristics. Generally, in image
processing there is no preferred spatial frequency axis. The frequency
response of restoration filters may be specified by other filter structures
such as those of inverse filtering, homomorphic filtering, etc.

Depending on whether or not the impulse response is of finite
extent, digital filters are divided into finite impulse response (FIR)
filters or infinite impulse response (IIR) filters. IIR filters have
poles in their transfer functions while FIR filters have only zeros.

If the two-dimensional transfer function can be factored into a
product of two one-dimensional transfer functions, one in each variable,
the filter is said to be separable:

H(zl,zz) = Hl(zl) Hz(zz)

The great advantage of separable filters is that their implementation
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is much simpler. Also, the computer memory requirements are reduced
enormously,

Direct implementation of FIR filters using convolution is practical
only if the impulse response is very short. In general they are
implemented using the FFT. Recursive algorithms are used mainly for
IIR filters; each output sample is a function of previous output samples,
as well as past and present input samples. Since in image processing
applications the signal is space-limited, the filter output will be
eventually truncated. An IIR filter with a truncated output may be
considered as an FIR filter and fast convolution techniques could be
used in its implementation. However, the computer memory requirements
_would be enormous, thus making a recursive implemehtation more

appropriate.

4.3 Design of Two-Dimensional FIR Filters

The current techniques for designing two-dimensional FIR filters
are the following: windowing, frequency sampling, linear programming,
exchange algorithms, and mappings or projections to convert the two-
dimensional problem into a one-dimensional one [62]. All these
techniques except the first one, i.e. windowing, are in some sense
optimum design techniques (computer-aided design techniques).

Only the windowing technique is discussed here because it is the
simplest and most efficient computationally. Due to the current
computational constraints in the optimum design techniques, the windowing
method is the only one which can be used to approximate a completely

arbitrary complex frequency response.

o
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The design of two-dimensional FIR filters using the windowing
technique is a direct extension of the one-dimensional case [13], [S7].
The desired frequency response is specified either as an analytic
function or as a sequence of numbers forming a table of response versus
frequency (i.e., the DFT coefficients, see Appendix B). This frequency
response must be specified at a large number of points to prevent
aliasing in the space domain.

Let Hd(fl,fz) be the desired frequency response of the digital
filter. Since Hd(fl,fz) is periodic in frequency it can be expanded in

a two-dimensional Fourier series of the form

~ - o~ ~j2mn. £ -j2m,f
Hy(£,,£) = 2 2. h(n;nJe 11 e 272 (4.1)

Nn,=-w N.==c

1 2

where

1 1 j2m. £ j2mn,£f
h(n,,n,)) =j; j; Hy(f,,£,) ?“TN17 1 172N df) df, 4.2)

The coefficients of the Fourier series h(nl,nz), also called filter
coefficients, are identical to the filter impulse response or point
spread function, which is of infinite extension in the space-domain.
Therefore it must be truncated to make the filter realizable. Since
simple truncation would produce unacceptable ripple around the
discontinuities in the frequency response, the filter coefficients are
modified using a finite weighting sequence w(nl,nz), called a two-
dimensional window, to improve the convergence of the truncated Fourier

series. Thus the final approximation to Hd(fl,fz) is obtained as:
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Nl—l N,-1

2
_ -j2m. £ -j2mn, f
Hr(fl,fz) = E E hr(nl,nz) e 171 e 272 (4.3)

Nl-l N2=l

where
hr(nl,nz) = h(nl,nz) w(nl,nz) (4.4)

It is easy to show that the respective frequency responses are related

by circular convolution, namely

H (f),£,) = Hd(fl,fz)*W(fl,fz) (4.5)
where
N -1 N,-1
. —— .
-j2mn. £ -j2m, £,
W(E ,£) = E E wn,,n,) e 1'1 e 22 (4.6)
n _-}I——]:—_—l n 2_&__1_
17 2 2 2

The choice of the window function is important. Since the resultant
frequency response will be the circular convolution of the desired
frequency response with the Fourier transform of the window function,
it is necessary to choose a window with a large volume under the main
lobe and a small volume under the sidelobes.

Different types of windows provide different trade-offs between the
resolution and ripple in the overall frequency response. Here,
resolution means the bandwidth of the transitions between discontinuities
in the desired frequency response, and the ripple is the maximum
deviation from the desired frequency response for frequencies outside

the transition regions [57].
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In two dimensions, only two types of windows are of interest;
separable and circularly symmetric. They are represented mathematically

in (4.7) and (4.8), respectively.

w(nl,nz) = wl(nl) wz(nz) 4.7
w(n,,n,) = wl{ n% + n% } (4.8)

where wl(nl) and wz(nz) are appropriate one-dimensional (continuous)
windows sampled at the proper values. Huang [58] has proved
mathematically that good one-dimensional windows produce good circularly-
symmetric two-dimensional windows.

There have been many windows proposed that approximate the desired
characteristics of an optimal window. We have chosen to use a Kaiser
window [59] because it is not only an optimum window in the sense that
it is a finite duration sequence that has the minimum spectral energy
beyond some specified frequency, but also it contains a parameter that
controls the frequency response trade-off between resolution and ripple.
The Kaiser window constitutes a relatively simple approximation to a
class of functions called prolate spheroidal wave functions which give
a closed form solution to the equivalent problem in the continuous case.

The one-dimensional Kaiser window is of the form:

w(n) = - - —-2-—— <n s (4.9)

where 8 1is a constant that specifies a frequency response trade-off

between the peak height of the side lobe ripples and the width or energy




of the main lobe, and IO(=) is the modified Bessel function of the
first kind and order zero.

When Hd(fl,fz) is not an analytic function and sometimes even when
it is, (4.2) may be too difficult to evaluate. Then a summation

approximation to the integral as shown in (4.10) can be used.

Ml-l szl
_ 1 j2m, k. /M j2m k /M
ha(nl,nz) = N E E Hd(kl/M1 ,kZ/MZ) e 1171 e 27272
172
kl=0 k2=0

(4.10)

Clearly (4.10) may be evaluated efficiently as a MIXMz-point
inverse DFT (see Appendix B). It is easy to show that ha(nl,nz) is an
aliased version of h(nl,nz). Since the window looks only at N1><N2
points of ha(nl,nz), a necessary restriction is that Ml>>Nl and
M2»>N2. This condition makes the computer memory requirements very
large. If the filter is separable the two-dimensional DFT can be
evaluated by a sequence of one-dimensional DFT's. In this case the
computer memory required is much smaller and is proportional to M1+Nb
rather than MlXMz.

Another problem with windowing is due to the smearing effect of the
convolution, which makes it hard to control the locations of the
transition bands of the resulting filter. This may not be a problem
in image processing if a smooth transition band is desired and its
position is not critical, but the design of narrow-band or wide-band
filters may be difficult to achieve.

Figures 4.1 and 4.2 show examples of two-dimensional digital filter

designs using the windowing technique. The program listings are included

in Appendix C.
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Figure 4.1. Magnitude response (in dB) of a Kaiser-window elliptically-

shaped band-pass FIR filter with an impulse response of
size 31x31 samples.
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Figure 4.2. Magnitude response (in dB) of a Kaiser-window circularly-
symmetric low-pass FIR filter with an impulse response of
size 31x31 samples.

73




The examples shown belong to a class of two-dimensional FIR filters
with low-pass, band-pass or high-pass characteristics and elliptical or
circular shape. The ideal frequency response of this class of filters

is specified by:
£2 £2 £2 £2

1 for ~l-+ 2, 1 and ~l-+ _Z <1
2 2 2 2
ST V102
H,(f,,f.) = .. ..
d~"1° 72 (lower transition band) (upper transition band)

0 otherwise

In general Hd(fl,fz) represents an elliptical annulus (ideal band-
pass filter). For low-pass filters the condition for the lower transition
band is ignored (21=12=O) and for high-pass filters the condition for the
upper transition band is ignored (v1=v2=w).

The ideal impulse response for this class of filters is found by
evaluating (4.2) and the actual (windowed) impulse response is given by

(4.4), (4.8), and (4.9), that is:

hr(nl,nz) = h(nl,nz) w(nl,nz) = h(nl,nz) wK(V n% +n§) = 4(n2+h2)
) ™ vleJl(ﬂVv%n%+v§n%) _ T Qllle(ﬂVQ%n%+2§n%) ) 1038 1- —?;i:3€§ €
for - N;l < < N;l and 'Nél < n, < N;l

This equation is evaluated by the subroutine HKWBPF. For the calcu-
lation of IO(-) we have used a function subprogram which is a medification
of a subroutine by Kaiser [59]. We did not find a suitable program for
the calculation of Jl(-), consequently we ‘developed our own which uses
two different algorithms depending on the value of the argument. In this

way at least six exact digits are always obtained very quickly.




4.4 Design of Two-Dimensional IIR Filters

The importance of two-dimensional IIR filters is in their potential
for saving both computer time and computer memory with respect to FIR
filters. However, the design of IIR filters in two dimensions 1is
difficult due to the fact that a polynomial in two variables P(zl,zz)
cannot in general be factored into first- or second-order polynomials.
This implies that many one-dimensional design techniques cannot be
readily extended to two dimensions and that a high-order two-dimensional
filter cannot in general be synthesized in parallel or cascade form to
reduce the effect of quantization noise. It is also difficult to test
the stability of two-dimensional IIR filters except in simple cases.
Stability is an important issue in the design of IIR filters. If a
filter is unstable, any input, including computational noise, can cause
the output to grow without bound, obliterating the desired response.
The basic theorem for guaranteeing stability with two-dimensional IIR
filters is due to Shanks [60]. Application of Shanks' test is
conceptually straightforward but computationally involved. Simpler
stability tests have been proposed by Huang [61] and others. The state
of the art has been reviewed by Mersereau [62].

The frequency domain design techniques for two-dimensional IIR
filters can be divided into optimum design technidues and ad hoc design
techniques.

Optimum filters may be more efficient in terms of the realization
but the computation time of the design can become prohibitively large.

The ad hoc design techniques proposed so far consist in cascading

elementary one- and two-dimensional filters. A class of elementary




filters can be obtained with a design method due to Shanks which maps
one-dimensional into two-dimensional filters with arbitrary directivity
in the two dimensional frequency response plane. These filters are
called rotated filters because they are obtained by rotating one-
dimensional filters.

In a previous work we used this method to design good approximations
to circularly-symmetric filters by cascading rotated filters [63]. We
also proved that if the angle of rotation & lies between 270° and 360° then
the filter is marginally stable.To implement filters with angles of rotation
not in this range the data transformation techniques to be developed in
Section 4.5 are used to achieve the desired frequency response. To
measure the goodness of the designed filters, several kinds of shape
factors that are suitable for two-dimensional filters were developed [63].

Rotated filters are designed in the s-domain and the the two-
dimensional bilinear z-transform is used to obtain a digital filter.

Due to the double periodicity of the frequency response of two-dimensional
digital filters, the desired frequency response of rotated filters is
distorted to an extent which depends on the angle of rotation. We have
observed that in the low-frequency region the deviation from the desired
frequency response is maximum for a rotation of 315°. The previously
mentioned algorithm for designing circularly symmetric filters did not
compensate for this effect. The frequency response was approximated
iteratively in one direction only and each rotated filter in the cascade
was designed with the same cutoff frequency.

We have developed a new algorithm in which the frequency response

is approximated in as many directions as the number of rotated filters




being cascaded. The cutoff frequency of each rotated filter is adjusted
separately and iteratively according to the frequency response obtained
when all the filters in the cascade are considered.

This approach has not only the advantage of giving a better
circularly-symmetric frequency response But also non-circularly-
symmetric filters can be designed by specifying different cutoff
frequencies in each direction. Of course, since only low-pass filters
are cascaded, the relationships among these cutoff frequencies cannot be
arbitrary because the locus of the cutoff frequency of the two-dimensional
filter is a smooth path such as a circle or an elipse.

Using this new algorithm problems of convergence may arise if too
much accuracy is specified in too many directions. The program takes
care of this problem by aborting the iteration as soon as it ceases to
converge. An error code is returned which specifies if convergence was
attained. There is a compromise between accuracy in the cutoff frequen;y
and the number of directions in which it is specified.

The new algorithm features the following steps:

1) Initialization. Get the poles and zeros of a stable one-
dimensional continuous low-pass filter with cutoff frequency normalized

to 1/(2m), (i.e. cutoff angular frequency normalized to unity). Get the

N angles of rotation 270° < (k) = 3600, k=1, ... ,N and the desired
cutoff frequencies fu(k), k=1, ... ,N of the two-dimensional digital
filter in each direction 8(k) +9OO, k=1, ... ,N. The frequencies fu(k)

are given as fractions of the Nyquist frequency fNé 1/(2T). If the input
arguments are inconsistent, return to the calling program with an error

code IERROR=1. Otherwise let i=0 for the first iteration and continue.




i
2) Let fd(k) = fu(k), k=1, ... ,N.

3) For k=1, ... ,N determine the coefficients of the N rotated
digital filters derived from the one-dimensional continuous filter by
multiplying the poles by (W/Z)fé(k) or by tan[(n/Z)fé(k)] if the
frequency axis is to be prewarped (cf. (11) in [63]).

4) With the N rotated filters in cascade find the cutoff frequencies
of the resultant two-dimensional filter, fi(k), k=1, ... ,N, in the
directions 9 (k) +9OO, k=1, ... ,N, respectively. If the algorithm that
searches for these cutoff frequencies does not converge, then return to
the calling program with IERROR=3.

5) If [fu(k)-fi(k)l <g for k=1, ...,N where e is the specified
maximum error of the cutoff frequency in each direction; then return to
the calling program with IERROR=0. Iﬁ this case the execution is
completed satisfactorily.

6) If there is no improvement in the last iteration step, that is

N

if ) ]fu(k)—fi(k)( >

i-1
L ) £, - £ ()]

1

i ~—1=

then return with IERROR=4.
7) Let i<« i+1. If i is greater than the maximum allowed number
of iterations return with IERROR=2.
i i-1 i-1
8) Let fd(k) = fd (k) + fu(k) - fC (k), k=1, ... ,N.

9) Go back to step 3).

The cutoff frequency of the two-dimensional digital filter in a
given direction (cf. step 4) is obtained from a function program that

gives the frequency response of the filter at any point in the two-

78




dimensional frequency response plane. This point can be defined either

in polar or cartesian coordinates. In addition, since stable rotated
filters can be obtained only for angles of rotation between 270° and

3600, a parameter is used which specifies how the filter is to be combined
with data transformations to obtain desired symmetries. Thus, the overall
system has the required cutoff frequencies.

Additional utility subroutines were written which can be used to
normalize, print and punch the filter coefficients, design high-pass
filters, evaluate the frequency response in any rectangular region of the
two-dimensional frequency plane, determine shape factors, check for
stability (not necessary with this technique because stability is
guaranteed), synthesize the filter using complex cascade programming,
produce contour or perspective plots of the responses, etc.

The source program listing of the new two-dimensional filter design
algorithm is given in Appendix C. Examples of filters designed using
it are shown in Figures 4.3 and 4.4.

For non-circularly-symmetric filters, it may seem possible to
obtain elliptic shapes or other shape types from circularly-symmetric
filters by changing the scaling along each axis. However this is not
possible in general because the filter would most probably become
unstable. On the other hand, the technique that we described previously

guarantees stability.

4.5 A Group of Linear Spectral Transformations

In two-dimensional recursive filter design, stability and causality

are major requirements. In many cases these requirements impose severe
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high-pass IIR filter with zero-phase response (derived from
a fourth-order Gaussian magnitude approximation continuous
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Figure 4.3.



Figure 4.4. Magnitude response of a two-dimensional circularly-symmetric
band-pass IIR filter with zero-phase response (derived from
a fourth-order Gaussian magnitude approximation continuous
filter and rotations by multiples of 30°).
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constraints on the filter frequency response which can be attained.

When these constraints limit the geometrical shape of the pass and stop
regions of the two-dimensional digital filter, something can be done to
change that shape. Indeed, instead of modifying the transfer function of
the filter, which in most cases would lead to instability, transformations
of the input and output data may result in a stable system with the
desired transfer function.

Some of the transformations that we consider have already been
reported in the literature. Indeed, this section was motivated by the
zero-phase technique outlined in [60]. Also, data rotations have been
used in the past [63] to design stable recursive filters with circularly-
symmetric magnitude response. The purpose of this section is to give a
unified presentation with emphasis on the stable realization.of the
filters by equivalent data transformations. Other spectral transfor-
mations for two-dimensional digital filters based on a different approach
have been studied elsewhere [64].

The transformations proposed in this section are based on the concept
of causality in two dimensions and the fact that the z-transform does
not completely specify a sequence unless a region of convergence is
associated with it.

Causality, as understood in the time-domain, has no physical
meaning in two-dimensional image processing. Nevertheless, since
recursive filters process data sequentially, in two dimensions the term
causality is conveniently associated with the ordering of the data
samples being processed. Huang [61] defines the two-dimensional recur-

sive filter that recurses in the (+n1,+n2) direction as causal.

82




A causal filter has a response in the first quadrant only.

Recursive filters can be described by difference equations. Each
difference equation has a unique z-transform (i.e. the transfer function),
but depending on which term of the difference equation we solve for,
different regions of convergence of the z-transform are specified [61],
[12, Chapter 2]. Thus to each region of convergence there corresponds a
different unit-sample response. It can be shown that at most one of
these unit-sample responses satisfies the BIBO stability condition,

that is,

Z Ih(nl,nz)[ < w,

The frequency response of all these filters is the same because it only
depends on the transfer function. The frequency response is obtained
by evaluating the transfer function for zl=exp(—j2ﬂflTl) and

22=exp(-j2ﬂf2T2), where T, and T2 are the sampling intervals.

1
Suppose that we are given a stable and causal two-dimensional
recursive filter with frequency response H(fl’fz)' Consider all the
linear transformations of the spectral plane which map the spectral axes
onto themselves. There are eight such possible transformations [65]
and they have the algebraic structure of a finite group+ under the
operation of multiplication [66]. These transformations and their effect
on the frequency response of the digital filter are the following (refer

to Figure 4.5):

+ In the algebraic literature this group is referred to as the dihedral
group of order 8.




Figure 4.5.
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(a)-(h) Group of linear spectral transformations.

identity
. 0 .
clockwise 90  rotation
. o .
clockwise 180 rotation
. 0 .
clockwise 270" rotation
vertical mirror image
transpose with respect to the principal diagonal
horizontal mirror image

transpose with respect to the secondary diagonal.

These transformations could equivalently be defined in the (zl,zz)-

domain by inverting and/or interchanging the complex variables

z. and z

1

2

in the filter transfer function, but the transformations are




easier to visualize in the frequency domain.

Because of the symmetry of the stability condition [60, Theorem 1],
only H(fl,fz) and H(fz,fl) are causal and stable among these eight
transformed filters. All other transformed filters are noncausal and
have different stability conditions which are incompatible with those
of H(fl,fz) and H(fz,fl) [61, Theorem 2}, [67]; and therefore are
unstable. It should also be mnoted that if the unit-sample response
of the filter H(fl,fz) is real, both H(fl,fz) and H(~f1,—f2) have the
same magnitude response, which is symmetric with respect to the origin,
and opposite phase responses. For this reason, from H(fl,fz) only four
distinct magnitude responses can be derived by the transformations shown.
The other transfer functions may be utilized to obtain filters with
zero phase responses. This is achieved by combining in series or in
parallel two filters with the same magnitude response and opposite
phase responses [60].

As previously mentioned, in some cases a stable filter may be found
which has the same frequency response as the unstable filter, by solving
the difference equation for a different term. There are two alternatives
for synthesizing the equivalent stable filter. The first is to filter
the data in a different manner [60] by using an algorithm recursing in
another direction. Figure 4.6 shows the direction of recursion, sense
of recursion, and the starting point of the input data for each of the
transformed filters. A horizontal arrow denotes a recursion by rows and
a vertical arrow denotes a recursion by columns. The head of the arrow
points in the sense of recursion and the base of the arrow shows the

starting point.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.6. (a)-(h) Realization of a transformed filter by changing the
direction and sense of recursion of the filter algorithm.
The second alternative is to transform the data [63]. Indeed, it
is easily shown that the system described by (4.11) in the frequency
domain is equivalent to the system in (4.12). This follows from the
fact that the application of a transformation distributes over pointwise

multiplication.

1)

Y(fl,fz) ['TH[fl,fZ) ]-X(fl,fz) (4.11)

1)

T{H(fl,fzj-[T’1X(f1,f2)]} (4.12)

where X(fl,fz) and Y(fl,fz) are the Fourier transforms of the input and
output of the system, respectively, and the transfer function of the
) operated on by the transformation T, which can be any

system is H(fl,f2
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X— T = H—~ T —V

Figure 4.7. Realization of a transformed filter by equivalent data
transformations.
of the eight, previously described. In (4.12) the inverse transform
is applied to the input data before filtering with H(fl,fz), and the
transform itself to the output data, after filtering. This process 1is
illustrated in the block diagram of Figure 4.7. This sequence of
operations gives the desired transfer function and guarantees stability
because the recursive filtering is done with H(fl,fz) which is stable
by definition. Data transformations do not affect stability because if
a filter is stable it will remain so no matter what the (bounded) input
is. Also, the data transformations in Figure 4.7 affect neither the
linearity nor the space-invariance of the system.

The system (4.12) shown in Figure 4.7 is best realized in the space
domain. The transformations are easily applied to the data which are
given in the form of a matrix, and they can be done in place if the
matrix is square. Here we use the property that an orthogonal change of
coordinates in the space domain results in the same change of coordinates
in the frequency domain [65].

Systems like that in Figure 4.7 can be cascaded to obtain a system
with zero phase or other useful symmetries. In this case it should be
noted that, since the set of transformations forms a group under the
operation of multiplication, whenever two transformations are cascaded

they can be combined together into a single transformation.
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A multiplication table for these transformations is given in [66].

One important remark about the use of these techniques is that not
only must a filter be stable but also the filter output array must be
large enough, so that the effect of truncating the filter output is
negligible.

‘The examples shown in Figures 4.8 through 4.13 illustrate that
from a single digital filter other filters with useful symmetries can be
obtained. Perspective plots of both the impulse responses and magnitude
responses are shown. In every case the impulse response was found by
solving the recursive equations using complex cascade programming [68]
for a unit-sample input and assuming zero initial conditions. The unit-
sample input consists of a 41 x41 matrix where the only non-zero value
is the sample (21,21) which is equal to one. The filters in Figures 4.8
and 4.9 are first quadrant filters. If we denote by H the transfer
function of a first quadrant filter and by R a rotation of 900, the
results of implementing the combination -H - R -~ H » R_1+ are shown
in Figures 4,10 and 4.11. These filters have circular symmetry but not
zero phase response. To obtain zero phase response we may implement,
for example, »H+ R~+H >R >H -+ R > H~> R+ and the results are shown

in Figures 4.12 and 4.13.

4.6 Data Management Techniques in Two-Dimensional Digital Signal

Processing

In a digital computer an image is represented by a matrix of real
or integer numbers that correspond to intensity or density values at

the sample points. The sampling grid is rectangular, usually with the
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(b)

Figure 4.8. Second-order Butterworth filter rotated 315°. (a) Impulse
response. (b) Magnitude response.
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Figure 4.9. Elliptically-shaped filter formed by cascading three second-
order Butterworth filters rotated 285°, 315°, and 345°.
(a) Impulse response. (b) Magnitude response.
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Figure 4.10. Filter formed by the combination - H - R = H » R
H is the filter in Figure 4.8 and R is a data rotation of
(b) Magnitude response.

90°. (a) Impulse response.
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(b)

Figure 4.11. Filter formed by the combination - H - R +~ H - R_l ~+, where
H is the filter in Figure 4.9 and R is a data rotation of
90°. (a) Impulse response. (b) Magnitude response.
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Filter formed by the combination +H >R >H->R +>H >R >
-~ H - R -, where H is the filter in Figure 4.8 and R is a
data rotation of 90°. (a) Impulse response. (b) Magnitude
response.
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Figure 4.13.

(b)

Filter formed by the combination + H-+ R +H >R ~>H +> R >
+ H > R >, where H is the filter in Figure 4.9 and R is a
data rotation of 90°. (a) Impulse response. (b) Magnitude

response.
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same sampling intervals in both directions., The Nyquist criterion and
the required resolution impose a lower bound on the sampling frequency.
The computer memory available imposes an upper bound to the number of
samples and thus to the size of the image. If that size is sufficient
for a given application or problem the whole data matrix can be stored
within the computer random access memory and no special difficulties are
encountered in implementing the image processing algorithms, apart from
the inconvenience of working in two dimensions.

At the University of Toronto Computer Centre, for example, the
machine for general purpose computing used for this research was an IBM
SYSTEM/370 MODEL 165-I1 (0S/MVT with HASP) with 4 megabytes of memory. The
dynamic memory pool available to the batch user was slightly under 1400 K
total. This allowed direct processing of real matrices of size up to 512x512,
single precision. On the other hand, the main memory available in other computer
systems is very small. With 28 K of main memory, for example, only
matrices of size up to 64 x 64 can be processed directly. Nevertheless,
in any case the usable size for the image data is smaller because
additional memory is required for convolution or boundary conditioms,
depending on the type of realization used: nonrecursive or recursive
respectively.

When a datum matrix exceeds the capacity of the computer main
memory, the data have to be stored, say row by row in sequential-access
storage devices, such as disks or tapes. Rowwise operations are then
easily done but columnwise operations are incompatible‘with the sequen-
tial row access storage. This is the principal difficulty in the

implementation of two-dimensional digital signal processing algorithms [69].




We are next to propose some solutions for both nonrecursive and recursive

realizations.

Nonrecursive realizations

Direct convolution may be easily done by having a few rows in main
memory. When a row is no longer needed it is written back into auxiliary
storage and a new row is read. However with extensive impulse responses
fast convolution techniques must be used. |

Fast convolution consists of transforming the matrices to be
convolved, multiplying point by point 'in the transform dbmain and inverse
transforming the result. Since this is really circular convolution, the
matrices must be padded with zeros to simulate linear convolution. For
example, to convolve a datum matrix of size M1><N1 with a filter impulse
response of size M2><N2, transforms of size (M1+M2—1) X(N1+N2-1) must
be used. In addition, these numbers should be powers of two for an
efficient implementation using the FFT programs currently avéilable; if“
they are not, the matrices should be padded with additional zeros. If
the filter impulse response is separable it can be stored in two vectors
rather than in a matrix and the two-dimensional convolution can be
accomplished by repeated evaluation of one-dimensional convolutions
{12, pp.115-120].

Several FFT routines (refer to Table 4.1) were coded in FORTRAN IV
to meet the needs of digital image processing. One of the main features
of these subroutines is that their source code (see Appendix C) is
meaningful and easy to understand.

The subroutine VFFT is a one-dimensional very fast discrete
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Table 4.1. FFT routines for digital image processing.

EXTERNAL
ROUTINE INPUT IN AUXILIARY OUTPUT
vame  ROUTINES  napp PLACE  STORAGE DATA ~ UNSCRAMBLING
NEEDED
VFFT - complex = yes no complex yes
vector vector
FFT2 VFFT complex  yes no complex yes
matrix matrix
FFT2R VFFT real yes no half of a yes
RLTR matrix hermitian
matrix
FFT2D VFFT complex no ' yes complex optional
matrix matrix
FFT2DR VFFT real no yes half of a optional
RLTR matrix hermitian
matrix

Fourier transform which uses the Sande algorithm, radix 4+2, with unscram-
bling. This implementation of the FFT recursively calculates the twiddle
factors in order to get greater speed at the expense of some loss of pre-
cision. The CPU time required to transform 1024 complex datum points
(stored in 2 REAL*4 arrays) using VFFT is 47 msec. in the IBM 370-165-11.
Both FFT2 and FFT2ZR éall VFFT to do the transform on the rows and on
the columns of the two-dimensional array. FFT2 can transform a matrix
of complex numbers stored either in a single complex array or in two
separate arrays, one for the real part and one for the imaginary part.
In image processing, due to the large size of the arrays, it is
important to use the property that the Fou?ier transform of a real datum
matrix is hermitian (see Appendix B), thus only relevant data are stored.

The subroutine FFT2R is for real data and no storage is required for the

e}
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imaginary part, except for two additional rows or colums. FFT2R can
take advantage of the symmetry of the transform either by rows or by
columns; if only one option is desired the program size is halved.

The CPU time required to trénsform a 256 x 256 matrix of real data using
FFT2R is 2.7 sec. in the IBM 370-165-1II.

Additional utility subroutines to be used in conjunction with FFTZR
or FFT2 are also given in Appendix C. They are short and require less
than 1K of computer memory. For example: CMAG2 determines the square
magnitude of thg transform, COMPLT completes the transform given by
FFT2R using symmetries, and CAMOVE rearranges the elements of the
transform so that the element at the origin is located at the centre of
the array.

When the size of the input data is considerably larger than thev
size of the impulse response, the ideas of block convolution using
either an overlap-add or overlap-save approach can be applied. The
input matrix is partitioned into blocks, each one is filtered separately
and then the results are appropriately combined [70].

In all other cases the need arises for transforming large datum
matrices stored sequentially in auxiliary storage. A conventional
approach is to first transform by rows, transpose the intermediate datum
matrix and then perform another rowwise transformation. The final
result may also be transposed again to have it in normal order. However,
transposing requires a separate program and considerable processing time.
These fast transposing, in-place algorithms are available for random
access storage devices only. Other solutions include storing the rows

alternately in as many files as the radix of the FFT structure and then
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performing sequential operations on the rows. For a transform of length
N= Zm, m passes of the data are necessary for the transform plus m-1
passes for unscrambling.

We are to develop here an FFT structure for large datum matrices
that requires two auxiliary files only and L passes of the data for a
transform of length N= KL, where K must be a power of two. The idea
was suggested by Onoe [71] but many details had to be worked out before
getting a workable algorithm. Its essence consists in the decomposition
of the original transform of size N= KL into L steps of N/K transforms
of size K. At each step the intermediate results are corrected by
twiddle factors and regrouped.

We derived the equation of this DFT algorithm which is given in

(4.13).
X(K) = X(k Ko -oe 5Ky ok ) =
NIl kn
= ) x(n) exp -j2mr— =
N
n=0
K-1  K-1 K-1
= nz—-o nz-o °te 1 Z_O X(no,nl’ LI ’nL_l) X
o - L-1"
L-1 L-1
‘ (no+n1K+ - +nL_1K )(ko+le+ e +kL_1K ) § )
X exp{-jam =
N
K-1 (k_+k.K+ ... +k. K9y n kK .n
. o 1 T "L-2 ) . L-1 o
= ] exp{-jar T exp{-jam : x
n_=0 K K
0
k-1 (k +k K+ ... +K, K*"5)n k. n
: 1 L-3 1 . 2" |
x ] exp{-j2m exp{-jam x
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. Kzl exp%—jzﬂ'ing_‘z—-g expg_jzﬂ_k_lllﬁ% X
nL‘2=O K K
Kil ) kOnL—l
X - I
n x(n_,ny, snp ) eXP% jam—— % (4.13)

where the first exponential in each summation is a twiddle factor and
the second exponential together with the corresponding summation symbol
and a datum sequence is a DFT of size K.

In the implementation of (4.13) the signal flow graph can be
arranged in many ways. We need a structure having the same geometry for
each stage thereby permitting sequential data accessing and storage.

The signal flow graphs shown in Figures 4.14 and 4.15 are examples which
satisfy this condition. Generalizing for N==KL, we coded the subroutine
FFT2D, whose simplified flow chart is given in Figure 4.16.

In a practical application an appropriate value for K ﬁustrbe
chosen. The trade-off between K and L depends on the size N of the
transform and the amount of main memory available. The best choice for
K is K=vN, that is L=2, if that is possible. For L greater than two,
records must be skipped with sequential access, which results in an
inefficient realization. If direct access devices are available there
is no need for skipping.

The unscrambling process takes considerable time; consequently,
some options were provided in FFT2D to make it general and save both CPU
and I/0 time. This means that can take and give the data in either

normal order or base-K digit reversed order, at the user's choice.
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INITIALIZATION

DO LS=1,L

DO KB=1,N/K

INPUT IN NORMAL

FORM A

READ ONE BLOCK

]

MULTIPLY BY THE
TWIDDLE FACTORS

NO

INVERSE YES
TRANSFORM 1
? FORM THE COMPLEX

CONJUGATE OF THE
INPUT DATA

FFT BY ROWS

]

K-POINT
ON THE

FFT's
COLUMNS

INVERSE

TRANSFORM
?

YES

{

FORM THE COMPLEX
CONJUGATE OF THE
SCALED OUTPUT ARRAY

WRITE THE TRANSFORMED
BLOCKS SEQUENTIALLY

UNSCRA&EEE?\“ YES

NO

1

UNSCRAMBL
THE ROWS

E

J

Figure 4.16. Simplified flow chart of the subroutine FFT2D.
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To perform fast convolution only, for example, there is no need for
unscrambling the transforms because it does not matter in what order the
point-by-point multiplications are done. Only the inverse transform of
the product should be unscrambled.

The unscrambling procedure for base-K digit reversal is slightly
different than for (base-2) bit reversal. A flow chart of a base-X

~digit-reversed counter is given in Figure 4.17 (cf. Figure 6.1 in [13]).

Recursive realizaations

The nature of recursive realizations makes them very suitable for
sequentially stored data. Causal filters are readily implemented.
Noncausal filters can be synthesized by means of the linear transforma-
tions described in the previous section. Some of these transformations
(rotations by 90O and 2700 and transpositions) must have access to both
rows and columns at the same time for interchange operations, not easily
done when the data is stored sequentially. We propose an alternative
here.

Suppose that we have to implement a filter whose transfer function
is a cascade of transfer functions of the type described previously.
Assume that the datum matrix is too large to be contained in computer
main memory and the data are stored sequentially by rows in auxiliary
storage, divided into logical records of K rows each. K is chosen so
that each submatrix consisting of K consecutive rows can be stored in
main memory.

The key point in this implementation is the ordering of the filter
sections corresponding to the cascade of elementary filters. Each

filter section in the cascade has a recursive algorithm associated with
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it. Figure 4.6 shows éll the possibilities for the direction of
recursion, sense of recursion and starting point on the input datum
matrix. Since that matrix has been divided into submatrices of K rows
each, which will be processed sequentially, the filter sections whose
diagrams have arrows originating in the first row and those with

arrows originating in the last row cannot be implemented simulta-
neously. Therefore, we lump together all the filter sections whose
diagrams have arrows originating in the bottom row (namely, Figures

4.6 (a), (b), (e), and (h) ) followed by a second set of filters whose
diagrams have arrows originating in the top row (namely, Figures 4.6
(¢), (d), (f), and (g) ). Then successively read each record
(submatrix of K rows) into the computer main memory and process it with
the first set of filters using the technique of datum transformations
previously discussed. The result is written back into auxiliary
storage, The last output row of each elementary filter must be saved
in main memory to serve as the initial conditions for the next record.
The same process is done with the remaining records until all the data
have been processed. Then the operation is repeated for the second set
of filters and with the records in reverse order.

Thus, this technique is compatible with the sequential access of the
data and at most two passes of the data through main memory are necessary.
It should be noted that two passes are necessary in implementing filters
with zero-phase response, only one pass would be required in some cases

where the zero-phase response requirement is not necessary.
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'Chapter \

IMPLEMENTATION OF THE PROPOSED TOMOGRAPHIC FILTERS

5.1 Introduction

In the previous chapters of this thesis we analyzed the problem of
recovering three-dimensional information from radiographs, presented a
solution, and developed a technique to implement that solution. In this
chapter all these elements are combined for the synthesis of tomographic
filters in a digital computer. The practical problems associated with
the digitization, processing, and reconstruction of pictorial information
are considered.

Tomographic filters are tested with computer-generated test patterns.
The effect of tomographic filters on radiographs of a test phantom with
lesions at different depths is also investigated for several operating
conditions of the X-ray system. Finally, we present some suggestions

for the implementation of tomographic filters in a clinical environment.

5.2 Synthesis of Tomographic Filters with a Digital Computer

In this section we show how the design and realization of
tomographic filters are implemented with the help of a digital computer.
The procedure for getting imagery in and out of the computer is discussed.
Examples of the magnitude response of typical tomographic filters are
given here, but the discussion of actual processing results is done in

Sections 5.3 and 5.4.
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5.2.1 Preparation and Digitization of Imagery

The data which must first be collected are the characteris-
tics of the radiologic system, a radiograph or set of radiographs, and
information on the geometries of the set-ups.

The radiologic system can be characterized by a pin-hole image of
the focal spot and the geometry of the set-up. The distances from the
pin-hole to the focal spot and to the film plane should be determined.
An important piece of information is the relative orientations of the
focal-spot pin-hole image and the radiographs. The object magnification
for the layers of interest should also be noted.

The pictorial information is on film and must be sampled for

processing in a digital computer.

Digitization of pictorial information

The equipment used for the digitization of images is briefly
described in Appendix D. It consists basically of a CVI video compressor
(model 260) conected to a DEC minicomputer (PDP-11). The input medium
to the system is a television camera [72]. This is a cheap, widely
available and versatile device, although it does not perform as well as
other devices in terms of resolution, signal-to-noise ratio, linearity,
and dynamic range [73]. We used a SONY portable television camera with
a zoom lens to vary the size of the field. The best resolution that we
could obtain was 3 to 4 samples/mm. in an area of approximately 60x60 mme .
With this system the sampling rate 1is differenf in each direction and

varies depending on the relative positions of the camera and film, and

the zoom lens. Since in our processing the knowledge of the sampling




rates is necessary, we used windows made of black cardboard and of known
size. The sampling rate in each direction is then given by the number
of samples from edge to edge of the window in that direction divided by

2

the distance between edges. We used 50x50 mm“ windows for the

radiographs to be processed with tomographic filters and 10%50 mm?

windows for the pin-hole images of the focal spot (including a reference

point on each of two sides of the pin-hole image).
The film was placed on a portable viewing box which produced a
uniform light intensity distribution behind the film. To eliminate

unwanted glare, only the portion of the film to be digitized was kept

uncovered. Black cardboard was also arranged around the viewing box to
provide a shade from light pollution in the room.

Although the full resolution of this system is 256x256 samples.
we only used 210x210 to avoid the poorer signal-to-noise ratios in the
edges and corners.

The digitized images were quantized to 6 bits (64 grey levels) and
stored on magnetic tape for off-line nrocessing.

Image analysis

Some of the digitized radiographs were analyzed by evaluating their
power spectra and power cepstra. Welch's method of power spectrum
estimation extended to two dimensions [55]/was used.

We noted the presence of high frequency side lobes on one of the
frequency axes of the power spectra. A visual inspection of the
radiographs did not provide a reason for this effect, which did not occur
in the power spectra of computer simulated radiographs. It was then

suspected that this was an artifact induced by jitter in the scanner
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itself. Indeed, if the scan lines are not uniformly spaced, an artifi-
cial spatial shift of each line results. This shifted line then intro-
duces artificial high frequency edges within the image that are perpen-
dicular to the scan lines [74].

To prove this hypothesis the same region of a radiograph without
lesions was digitiéed three times with three different orientations
(OO, 450, and 900). Naturally, in the absence of scanner jitter, the
spectrum of each digitized radiograph should be rotated by the same
amount as the radiograph [68]. In this experiment, rather than applying
the costly power spectrum estimation techniques, the two-dimensional DFT
was used. The digitized radiographs were multiplied by an appropriate
weighting function to reduce other sources of energy aligned with the
frequency axes, and then transformed.

We found in each case the presence of high frequency energy on the
axis perpendicular to the scan lines. To double check, the digitized
radiographs were rotated in the computer and Fourier transformed again.
We found that the spectra had also been rotated. Therefore we concluded
that the high frequency components were not due to noise asymmetries in

the two-dimensional FFT that we used, but were due to jitter in the

scanner.

5.2.2 Scaling of the PSF

At the end of Chapter III we already discussed how the PSF
can be obtained and approximated by a separable function to save memory
in the design of a tomographic filter. However, the sampling intervals

of the digitized PSF are not generally equal to those of the digitized
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radiograph and the size of the focal-spot pin-hole image must be scaled
to match the PSF for those layers of interest.

Since we used batch processing, it was decided that the approxima-
tion of the PSF by a separable function, the equalization of the sampling
intervals with those of the radiograph, and the scaling of the PSF were
best done by a separate program prior to processing.

Suppose that the focal-spot pin-hole image was obtained with focal-
spot to pin-hole distance A) and pin-hole to film distance A; and is
digitized with sampling intervals SX and Sy, thus obtaining MXX&gr samples.

Assume that the radiographs were sampled with sampling intervals TX
and Ty’ Let dl and d2 denote the distances from the focal spot to the
layer of interest and from that layer to the film, respectively.

The PSF for that layer is then obtained (see Fig. 5.1) by scaling

the pin-hole image of the focal spot according to (5.1).

Ay d2 :

X =X, (5.1a)
Aoy dl
Ay d2

y =Y, T T (5.1b)
Ay d1

where X and Y, are distances on the focal-spot pin-hole image and x and
y are distances on the radiograph.

The number of samples NXXbB, necessary to contain the PSF is given

by
S Ay d
N_= M X __ 2 (5.2a)
LX Az dl
S 4y d,
N =M L= (5.2b)

y Y
T, 8y d

111




Figure 5.1. Geometries of the set-ups for the focal-spot pin-hole image
and for the radiegraphs.

In certain cases (cf. Section 5.4) the sampling rates in the
radiographs are not sufficient to properiy define the PSF, so tomographic
processing is not possible.

The previously described procedure was not necessary in the
simulations of Section 5.3 because we had total control of the sampling

frequencies and chose separable focal-spot intensity distributions.

5.2.3 Design of Digital Tomographic Filters

Once the PSF for a layer of interest has been determined, a
separate program is used to design digital tomographic filters with
certain parameters. These parameters are chosen from a plot of the
magnitude response of the ideal inverse filter. From the frequencies at
the poles and the magnitude response at critical points, several sets of
hard limits and cutoff frequencies can be chosen. Other necessary

parameters are the size of the filter impulse response and the parameter
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8 used in the Kaiser-windowing technique (cf. Chapter IV). The design
of the tomographic filter is then straightforward.

The separable PSF is given by two sequences of length Nx and Ny
(cf. (5.2)), or only by one if they are identical. The DFT coefficients
are then determined with sufficient resolution. The subroutine INVFHL
is used to obtain the magnitude response of the tomographic filter with
the given hard limit. At this point an ideal low-pass filter is cascaded
with the tomographic filter to reduce the high frequency noise.

An FIR digital filter is then designed by transforming the frequency
response of the tomographic filter back to the space domain. The impulse
response is multiplied by a Kaiser window of appropriate length with
parameter 8. Normally we use a high 8, such as 8=9, in order to obtain
low ripples in the stopband and a smooth transition band. The DFT is
used once more to obtain the coefficients of the tomographic filter in a
form suitable for fast convolution realizations.

Toykeep the previously described design procedure under control,
relevant plots were produced at each step. A typical example of the design
of a tomographic filter for a certain layer is shown in Figure 5.2.

Examples of tomographic filters that were actually used are given
in Figures 5.3 to 5.5. It can be seen that the high-pass nature of an
inverse filter in cascade with a low-pass filter gives band-pass charac-

teristics to tomographic filters.

5.2.4 Filtering the Data

Filtering is the simplest operation in the whole process,

although it is the one that requires the most CPU time.
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Figure 5.2.

Plots of relevant functions in the design of a digital
tomographic filter using the windowing technique.

(a) Ideal inverse filter (in dB). (b) Inverse filter with
hard-limited magnitude response, (c) The filter in b)
cascaded with an ideal low-pass filter. (d) Impulse
response of the filter in c¢). (e) Kaiser window with B=9.
(f) Windowed impulse response. (g) Magnitude response of
the tomographic filter. (h) Same as g) in dB.
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Figure 5.3. Tomographic filter used to obtain Figure 5.10(c).

(b) Magnitude response in dB.
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A portion of the radiograph is chosen and multiplied by a two-
dimensional cosine taper data window to reduce the effects of leakage
(see Figure 5.6). It is then Fourier transformed with the subroutine
FFT2R. We found the size 256x256 to give a good trade-off between
resolution and cost.

The two-dimensional DFT of the radiograph and the filter coeffici-
ents are complex multiplied point-by-point. The result is inverse
transformed, quantized to 6 bits, and stored on magnetic tape. It
may also be displayed in a line printer using the subroutine PICPRT
(see Appendix C). The use of the line printer in batch processing to
obtain pictorial outputs by overprinting of characters has the advantage
of producing an immediate hard copy without distortions which is to some
éxtent quantitative. Nevertheless this type of display is not too

appealing to the eye.

5.2.5 1Image Reconstruction

The digitized images were displayed off-line on a commercial
television monitor using the CVI video expander {model 261A) which is
described in Appendix D. Hard copies were obtained with either a 35 mm.
photographic camera or an instant camera. A hood was used to shield the
display against light pollution. The television system introduces some
distortions in size which in general can be tolerated.

Since the sampling intervals are assumed different with this equip-
ment, we precompensated for this by interpolating in the direction of
the scan lines, thus reducing the number of samples to obtain a better

square ratio. In addition, to improve the visual effect of small images,
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Figure 5.6. Cosine taper data window. (a) One-dimensional.
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they were interpolated up to the full resolution of the system.

Any type of simple polynomial interﬁolation can be used for these
purposes. Zero-order interpolation and linear interpolation techniques
have been used in the past for similar problems [2]. Recently, a class
of interpolation functions, for the purpose of displaying interpolated
images with cosmetically pleasing effects have been suggested in the
literature [73], [75]. They are the one- and two-dimensional spline
functions of order m with co;tinuous derivatives of order 1 to m-1. In
all the examples shown in Sections 5.3 and 5.4 we have used bilinear
interpolation, to adjust the size of the image to the full resolution of

the display. The bilinear interpolation simply interpolates linearly

between two samples to generate other samples, in each direction.

5.3 Test of Tomographic Filters with Computer Simulated Radiographs

Before trying to filter actual radiographs, computer simulations
were used 1in order to have more control on the object, focal-spot

intensity distribution, noise, etc.

5.3.1 Computer Simulation of Radiographs

For the simulation of radiographs, test patterns were
generated in the computer. The basic test pattern consists of a series
of converging bars. Assuming an isotropic system there is no need to
consider bars in all orientations forming a circule as in a star test
pattern. By considering one orientation only, the resolution can be
increased. The convergence of the bars provides different spacings among
them and therefore the effect of filtering on different frequencies can be
examined. In order to have a three-dimensional object we superimposed two

flat test patters at two different levels and oriented at 90°, with respect
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to one another. This superposition of the bars gives a worst case
condition kind of test, because of the overlapping of structures from
different layers in the projection.

Two focal-spot intensity distributions were used, both separable:
uniform-square (Figure 3.7) and Gaussian with ¢;=0,=2 (Figure 3.9).

The uniform-square intensity distribution constitutes a bad case because
of the zeros and phase reversals in the transfer function. The Gaussian
intensity distribution constitutes a good case because the Gaussian
function is so well behaved.

The details of the simulations (using the subroutine XRAY, see
Appendix A) are summarized in Tables 5.1 and 5.2. The pictorial results
are shown in Figure 5.7. The difference between Figures 5.7(b) and
5.7(c) is only in the object. In Figure 5.7(c) an object with bars of
50% absorption was used, while in all the other figures the bars in the
object had 100% absorption. For comparison purposes and in order to
have an ideal image as a reference, Figure 5.7(d) shows a simulation of-
an X-ray image obtained with a punctual focal spot. In Figure 5.8
magnifications of the central part of the radiographs in Figure 5.7 are
shown. They are multiplied by a two-dimensional cosine taper data window
and their corresponding two-dimensional Fourier transforms are shown in
Figure 5.9.

Figures 5.7(d) and 5.8(d) show a block-like structure not visible
in the other simulated radiographs because it is smeared out by the blur.
This block-like nature is due to the magnification of the sampling
intervals in the object when they are projected on the film (see Tables

5.1 and 5.2 for information about the sampling intervals). The solution
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(a) (b)

(<) )

Figure 5.7. Simulated radiographs with different focal-spot intensity
distributions. (a) Uniform-square. (b) Gaussian.
(¢) Gaussian (50% object absorption). (d) Point source.
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(a) (b)

(d)

)

Figure 5.8. (a)-(d) Magnification of the centre parts of the
radiographs in Fig. 5.6 [(a)-(d), respectively]
multiplied by a two-dimensional cosine taper

data window.




(a) (b)

(c) (d)

Figure 5.9. (a)-(d) Two-dimensional Fourier transforms (in dB) of
the radiographs in Figure 5.7 (a)-(d), respectively.
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that minimizes the error in the staircase approximation is to use
sampling intervals in the object equal to the sampling intervals in the
film divided by the magnification factor. However, that would‘result
in enormous computer memory requirements. On the other hand, this
block-like structure is advantageous in these tests, because it permits
the evaluation»of the recovery of small details with tomographic

filters.

5.3.2 Processing with Tomographic Filters

We tried to keep the simulations and subsequent processing
as noiseless as possible so that we could concentrate on the evaluation
of tomographic filters. In practical applications noise is the limiting
factor to the resolution that can be attained.

Tomographic filters were designed as discussed previously. The
impulse response had 129x129 samples and the number of samples to be
processed was 128x128, which results in two-dimensional transforms of
size 256x256 to implement the convolution.

The results of tomographic filtering are shown in Figures 5.10 to
5.12. The characteristics of the filters used are summarized in Table
5.3. The hard limits and cutoff frequencies were chosen here by trial

and error. A discussion of the results follows.

Figures 5.10 to 5.12 should be compared with Figures 5.8 (a)-(c),
respectively, and Figure 5.8 (d) to draw the conclusions. In each case
we desire to restore the sharpness of the image of one layer and degrade
other images. Layers closer to the focal spot have an impulse response
of greater extent. Inversely, the magnitude response will be of greater

extent for those layers closer to the film; therefore, restoration 1is




(a) (b)

(c) (d)

Figure 5.10. Results of filtering Figure 5.7(a) with tomographic
filters. For layer 2: (a) h£=10 dB, (b) h2=20 dB.
For layer 1l: (c) h2=20 dB, (d) h2=30 dB.




(a) (b)

(c) (d)

Figure 5.11. Results of filtering Figure 5.7(b) with tomographic
filters. For layer 2: (a) h£=10 dB, (b) h£=20 dB.
For layer 1l: {c) h£=20 dB, (d) h£=40 dB.
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(a) (b)

() (d)

Figure 5.12. Results of filtering Figure 5.7(c) with tomographic
filters. For layer 2:(a) h, =10 dB, (b) h, =20 dB.
For layer 1: (c) h2=20 dB, (d) h2=40 dB.
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Table 5.3. Summary of the characteristics of the tomographic filters
used to obtain Figures 5.10 to 5.12.

LOW-PASS

AYER h BLUR
RESULTING ORIGINAL  FOCAL Lio 2 FILTER i
FIGURE  FIGURE SPOT (in dB) BANDWIDTH . °>'1¢

Uniform- -

5 0.21 3.0
5.10(a)  5.8() oo 2 10
5.10(b)  5.8(a) " 2 20 0.31 3.0
5.10(c)  5.8(a) " 1 20 0.78 1.2
5.10(d)  5.8(a) " 1 30 0.83 1.2
5.11(a)  5.8(b) ' 2 10 0.33 4.5
5.12(a)  5.8(c) laussian
5.11(b)  5.8(b) § , - 0 42 4
5.12(b)  5.8(c)
5.11(c)  5.8(b) " 1 20 0.83 2.1
5.12(c) 5.8(c)
5.11(d)  5.8(b) ) . 10 " .

L12(d) 5.8(c)

(O3]

easier for these layers. This is clearly seen in Figures 5.10 to 5.12.

The second effect which should be observed is that of the filter
cutoff frequency. For layers closer to the focal spot it was necessary
to use a low-pass filter of lower cutoff frequency to prevent the output
from being dominated by noise. The effects of the lower cutoff frequency
can be seen, for example, in Figure 5.10(a), where some of the bars in
layer 1 have disappeared.

The parameter h2 which was introduced in Section 3.2.2 has served as
a valuable tool for preventing images from becoming dominated by noise.
If h2 is large, the gain at the peaks (cf. Figures 5.3 to 5.5) may be too
high which leads to impulse noise in the image and results in spatial

cosine functions of gray levels accross the image.
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In conclusion then, since the restoration is easier with a Gaussian
focal spot, an X-ray system having this type of intensity distribution

should be chosen, if possible, whenever the radiographs are to be -

processed with an inverse filter.

5.3.3 DPositive Restoration Constraints

The main problem encountered in the examples shown previously was that
of positive restoration, that is the filter output should be positive.
Negative intensities do not have physical meaning and the filters used here
do not guarantee a positive result.

A filter that guarantees positive output is the homomorphic filter
[53]. The last step in hémomorphic filtering is exponentiation which
always gives a positive result. However, the filtering is done in the
density domain rather than in the intensity domain.

There exist a priori techniques applicable to numerical methods of
image restoration that introduce constraints in the filtration process
and guarantee a positive result [76]. However these techniques cannot
be used in our case because we are doing linear filtering.

In linear filtering the Lukosz bound applies. This is an amplitude
constraint for the Fourier transform of band-limited non-negative func-
tions [76]. This constraint is of a low-pass nature, which is opposite
to the high-pass characteristics of tomographic filters.

The a posteriori techniques that have been suggested to deal with
negative intensities are the following [77]:

1) Take the absolute value.

2) Square the output.




3) Add a constant to the output.

4) Clip at zero and neglect negative intensities.

All these operations are non-linear and will increase the bandwidth
of the result.

After trying some of these options we decided that clipping away
the negative intensities would produce a better visual effect. In other
situations another type on non-linear intensity mapping may be moTre

convenient.

5.4 Experiments with Actual Radiographs

5.4.1 Characteristics of the Radiographs Used

In order to test the performance of digital tomographic
filters with actual radiographs, a complete set was obtained from the
Radiological Research Laboratories, University of Toronto. They are
radiographs of a mock chest (phantom) with different sets of lesions
situated in the top and bottomT layers of the chest. In each case six
radiographs were obtained, which correspond to three different magnifi-
cations and two focal spot sizes. Nominally, the magnifications are
equal to 1, 1.5, and 2; and the focal spot sizes are 1 mm. and 2 mm.
(cf. Figures 3.11 and 3.12). Four radiographs were chosen from one set
for processing. In order to have sufficient resolution only a small
area of 50x50 mm2 on each radiograph was digitized. These portions of
the radiographs are reproduced in Figure 5.13, the corresponding digitized

images are shown in Figure 5.14, and the characteristics in Table 5.4.

+ The actual system used was oriented with the centre ray vertical.




(@) (b)

() (d)

Figure 5.13. (a)-(d) Portions of the actual radiographs to be
processed. The characteristics and geometries of
the radiologic system are given in Table 5.4.
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(c) (d)

Figure 5.14. (a)-(d) Magnification of the centre parts of the
radiographs in Figure 5.13 [(a)-(d), respectively],
digitized, windowed, and reconstructed.




Table 5.4. Information about the portions of the radiographs to be

processed.
- NOMINAL COCRDINATES WITH

FIGURE RADIOGRAPH NOMINAL FOCAL SPOT RESPECT TO THE
NUMBER MAGNIFICATION SIZE CENTRE RAY
(in mm.) (in inches)
5.13(a) 33 1.5 1 (0.40,2.50)
5.13(b) 34 1.5 2 (0.40,2.50)
5.13(c) 35 2 1 (0.75,2.75)
5.13(d) 36 2 2 (0.75,2.75)

The regions to be processed were carefully chosen to contain two
lesions, one in the top layer (small white area in the fourth quadrant)
and one in the bottom layer (large white area in the second quadrant).

Table 5.5 records Televant data about the geometries of the set-ups.

5.4.2 Processing with Tomographic Filters

The number of samples in the processed radiographs was
140x140 and in the filter impulse responses 117x117 (separable). Conse-
quently, fast convolution was performed by using two-dimensional DFT's
of size 256x256. The results are shown in Figures 5.15 to 5.17. The
filter parameters are given in Table 5.6, where thé subscripts 1 and 2
refer to the directions x and y, respectively, of the separable trénsfer
function.

Only the radiograph in Figure 5.14(a) could not be processed
because the small size of the blur did not allow for enough samples to

define it.
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Table 5.5. Geometric measurements in the set-ups for the actual
radiographs and sampling intervals of the digitization
(all the distances are given in mm.)
NOMINAL MAGNIFICATION
1x 1.5x% 2%
Top layer
d 1155.7 1460.5 1885.9
d; 819.8 819.8 819.8
d, 335.9 640.7 1066.1
m 1.4097 1.7815 2.3005
d2/d1 0.4097 0.7815 1.3005
Bottom layer
d 1155.7 1460.5 1885.9
d, 1059.8 1059.8 1059.8
dZ 95.9 400.7 826.1
m 1.0905 1.3781 1.7795
d2/c11 0.0905 0.3781 0.7795
Pin-hole images
A 1059.8
Ay 414.1
Ay 645 .7
Ay/dy 0.6413
Sampling intervals
Radiographs: TX = 0.3195 Tv = (0.2915
Pin-hole images: SX = 0.2857 Sy = 0.2708




(a) (b)

(c) (d)

Figure 5.15. (a)-(d) Results of filtering Figure 5.14(b) with
tomographic filters. The parameters are given
in Table 5.6.
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(a) (b)

(c) (d)

Figure 5.16. (a)-(d) Results of filtering Figure 5.14(c) with
tomographic filters. The parameters are given
in Table 5.6.
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(a) (b)

(c) (d)

Figure 5.17. (a)-(d) Results of filtering Figure 5.14(d) with
tomographic filters. The parameters are given
in Table 5.6.
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Table 5.6. Summary of the characteristics of the tomographic filters
used to obtain Figures 5.15 to 5.17.

LAYER HARD- LIMITS LOW-PASS FILTER

RESULTING ORIGINAL TO (in dB) BANDWIDTHS
FIGURE FIGURE DEBLUR h h (cycles/mm)
21 L9 fcl fc2
5.15(a) 5.14(b) top 10 10 0.34 0.37
5.15(b) 5.14 (b) top 20 20 0.41 0.51
5.15(c) 5.14(b) bottom 15 15 1.32 0.94
5.15(d) 5.14(b) bottom 20 20 1.48 1.11
5.16(a) 5.14(c) top 10 10 0.40 0.39
5.16(b) 5.14(c) top 20 20 0.49 0.53
5.16(c) 5.14(c) bottom 10 10 0.71 0.64
5.16(d) 5.14(c) bottom 20 20 0.86 0.84
5.17(a) 5.14(d) top 20 20 0.24 0.30
5.17(b) 5.14(d) top 20 20 0.70  0.30
5.17(c) 5.14(d) bottom 10 10 1.07 0.39
5.17(d) 5.14(d) bottom 20 20 0.40 0.53

" There is an effect that prevents full appreciation of the quality
of the restorations. It is the blurring due to the object itself,
because the lesions do not have sharp corners.

In general, the reconstruction of the top layer of the phantom
produces a sharper image of the lesion in that layer and also an
apparent reduction of its size. The same filter degrades the large
lesion in the bottom layer by filling it with gray levels. On the
other hand the reconstruction of the bottom layer degrades the lesion
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above it by smearing its image in the background.

The problems of positive restoration that we had with the processing
of computer simulated radiographs were not noticed in the processing of
actual radiographs. This was probably due to the higher degree of
randomness in the energy distribution of actual radiographs.

Enhancement techniques can be used after the reconstruction with a
tomographic filter to produce radiographic images more appealing to the

human evye.

5.4.3 Enhancement Techniques

Enhancement techniques can increase dramatically the visual
appearance of an image, especially in images with low contrasts. However,
enhancement techniques need a priori knowledge of the features that we
want to enhance and usually some iteration is needed before the viewer is
satisfied. A summary of enhancement techniques follows [41]:

1) Intensity mappings: Nonlinear operations on a point-by-point
basis to map one gray scale into another. They are used for film gamma
correction, histogram equalization, stretching of intensity regions, etc.

2) Eye modelling: Consists of precompensating for the response of
the visual system [53].

3) Spectral shaping: Use of low-pass, high-pass, band-pass, and high-
emphasis filters in the frequency domain [43]. If there is no preferred
spatial frequency axis these filters will possibly be circularly-symmetric
and recursive filters can be used in their implementation.

4) Pseudo-colour: Mapping of a particular gray scale to a given

intensity, hue and saturation defining a colour scale. Thus, the




effective dynamic range of the original gray scale is increased by
appealing to the human's visual response in colour.

We have developed programs to perform intensity mappings interac-
tively using a minicomputer and the CVi equipment at the CRF (see

Appendix D). Some facilities for pseudo-colour also exist at the CRF.

Tomographic enhancement

In this work we have been concerned with the tomographic restoration
of radiographs. It is also possible to do some tomographic enhancement
of radiographs using only the properties of magnification rather than
the focal spot blur. This form of enhancement is done with spectral
shaping filters (cf. Section 2.2.5).

Assume that all the layers in the object have the same bandwidth.
After being projected their spectra will be scaled differently depending
on the magnification of each layer (cf. Figure 3.6). A low-pass filter
will eliminate more high frequency components for those layers closer
to the film, therefore enhancing structures closer to the focal spot
(cf. Figures 5.10 to 5.12). On the other hand a high-pass filter will
enhance the layers closer to the film. Finally, with a band-pass filter

selected frequency bands can be enhanced for layers between a certain

depth and the film.

5.5 Experiments with Thin Objects

The examples shown in Sections 5.3 and 5.4 have the drawback that
the superposition of the various layers makes it difficult to see the
effects of tomographic filtering on each layer. To avoid this problem

some experiments were made with thin objects located at several levels
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and filtered with tomographic filters.

Six simulations were performed, see Figures 5.18 to 5.23. Two
simple shapes were chosen, an'annulus and a square-like annulus, which
were located at three different 1eveis: 400, 500, and 600 mm. from the
film. The characteristics of the simulated radiologic system were the

same as those of the previous tests with a Gaussian focal spot, namely

I (x,y) = exp{-2(x*+y?)} -1.4 < x,y < 1.4

and the focal spot to film distance was also 1000 mm.

Each simulated radiograph was filtered 24 times. The variables
were the parameters hg and fc (the magnitude hard-limit and the cutoff
frequency) and the distance from the plane of cut to the film. Four

different pairs of parameters hl and fc were used, the same as shown

in Table 5.3 for the Gaussian focal spot. Since the results are
similar for all of them, only the radiographs filtered with h£=40 dB
and fc=l.25 cycles/mm. are éhown. The tomographic filters were
designed for the following distances from the plane of cut to the film:
600, 550, 500, 450, 400, and 350 mm.

In Figures 5.18 and 5.19 the thin object is exactly in the middle
between the focal spot and the film. In either case (annulus or square-
like annulus) the sharpest image is obtained obviously when the plane
of cut coincides with the thin object at 500 mm. from the film. When
the object is between the plane of cut and the f£ilm (Figures 5.18 (b)-
(¢) and 5.19 (b)-(c)) the effects of a high-pass filter (cf. Section 3.3)
are manifest. On the other hand, when the object is between the plane

of cut and the focal spot (Figures 5.18 (e)-(g) and 5.19 (e)-(g)) the
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Figure 5.18.

Ahe 98-
132 )ZZI1ANE —o L B0
ANaGU) ae22) }XuZoo1 08

*2
sWuZiefXA32=ZBE1 - - XBB3eeZNR YIS YXMUKT <
- ~1¥A18312710e1307

- 1391327 11Xt srATE~ 8§ XTTZXL11] )41 Nua e

- ~+13)rereedt

(b) (c)

(a) Simulated radiograph of an annulus located 500 mm. from
the focal spot and 500 mm. from the film. This image was
processed with tomographic filters designed for layers at
the following distances from the film: (b) 600 mm.

(¢) 550 mm,
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Figure 5.18.

(d) 500 mm.

- continued

(e} 450 mm.
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(f) 400 mm.
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Figure 5.19. (a) Simulated radiograph of a square- like annulus located
500 mm. from the focal spot and 500 mm. from the film.
This image was processed with tomographic filters designed
for layers at the following distances from the filim:
(b) 600 mm. (c) 550 mm.
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Figure 5.19 - continued

(d) 500 mm. (e) 450 mm. (£) 400 mm. (g) 350 mm.
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Figure 5.20. (a) Simulated radiograph of an annulus located 600 mm. from
the focal spot and 400 mm., from the film. This image was
processed with tomographic filters designed for layers at
the following distances from the film: (b) 600 mm.

(¢) 550 mm.
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Figure 5.21.

(b) (c)

(a) Simulated radiograph of a square-like annulus located
600 mm., from the focal spot and 400 mm. from the film.
This image was processed with tomographic filters designed
for layers at the following distances from the film:

(b) 600 mm. (c) 550 mm.
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Figure 5.22. Simulated radiograph of an annulus located 400 mm. from
the focal spot and 600 mm. from the film.
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Figure 5.23. Simulated radiograph of a square-like annulus located
400 mm. from the focal spot and 600 mm. from the film.




low-pass characteristics of the overall transfer function are clearly
seen. These results are also in accordance with the impulse responses
shown in Figure 3.3 for the same system configuration.

In Figures 5.20 and 5.21 the thin object was closer to the film,
at 400 mm. from it. The effect of the ripples in the impulse response
(cf. Figure 3.3 (e)-(h)) for the layers betweeﬁ the plane of cut and
the film is very evident here.

Figures 5.22 and 5.23 were also processed but since the results
of tomographic filtering in this case were similar to to those of
Figures 5.18 (d)-(g) and 5.19 (d)-(g) to a greater scale, it was
decided not to include these images here.

In summary, the experiments in this section have corroborated the
theoretical evaluations in Section 3.3. By considering thin objects
the problems associated with the superposition of images of overlaying
layers, which mask the image of the tomographic layer, have been

avoided.

5.6 Simulation of an Actual System and General Discussion

A final experiment was prepared for the simulation of an actual
system with a double-peaked focal spot and a simple object of low
absorption (10%), consisting of two rectangles at 826.1 and 1066.1 mm.
from the film. The focal spot to film distance was 1885.9 mm.

The actual system being simulated was the one described in Section 5.4
with 2x nominal magnification. The two rectangles were located in the
same layers where the lesions were. The focal spot is the one shown

in Figure 3.12. To test the consequences of the asymmetries in the
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focal spot X-ray intensity distribution, two simulations were performed
with the object rotated 90°. These two simulations are shown in Figures
5.24 and 5.25. Each of these two simulated radiographs was filtered
with the same filters used to obtain Figure 5.17. The filter parameters
are shown in Table 5.6. The results are shown in Figures 5.26 and 5.27.*

These images are characterized by the ripples which have been
introduced. They are due to the peaks in the filter transfer function
(cf. Figures 5.4 and 5.5). Note for example in Figures 5.26 (b) and
5.27 (b) how the ripples appear consistently in the larger rectangle
which corresponds to the layer with the larger magnification. Notice
also that the orientation of the ripples is always the same because they
depend on the focal spot X-ray intensity distribution, which was fixed
in this experiment, §nly the object was rotated.

The effects of the radiologic system and tomographic filtration
can be measured and explained when the object is known; but in practical
applications the success and value of a tomographic filtration process
will depend on the characteristics of the relevant features inside the
object being examined. These characteristics are determined by the
distribution of absorption coefficients. In the remainder of this
section we discuss briefly some factors in the object that affect the
quality of the results.

When the X-ray absorption in overlaying layers is large, the visi-

bility of the tomographic layer is reduced; but no additional problems

+ (Cross-sections of each one of these images were also generated, but
since they did not offer any additional insight to the evaluation of
tomographic filters, they are not reproduced here.
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Figure 5.24. Simulated radiograph of a low-absorption object (the charac-
ters 1-9,A represent intensity levels)
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seem to be introduced by the filtration process due to this higher
absorption, in spite of the fact that tomographic filters were derived
assuming small variations in the absorption coefficients in the object.

Another factor to consider is the size, shape and distribution of
structures in the object, which can be visualized in terms of frequency
components. We have seen that at very low frequencies tomographic
filtering does not have any capabilities to differenciate among layers
and furthermore the filter outpuf may become very noisy, thus
decreasing the quality of the image. To do tomographic filtering we
need structures with edges, that is structures which have high-
frequency components. Fortunately, in radiologic applications there
is interest for small particles such as lesions, blood vessels, etc.
Even when these particles are readily seen in the form of a white spot
or line on the film, some help is needed in their interpretation.

Finally, another factor that affects the quality of filtered
radiographs is due to the ripples in the impulse responses for the
layers on the side of the film when the plane of cut 1s close to the
focal spot. In some cases this is an advantage if it makes disappear
unwanted details from overlaying layers, but on the other hand the
ripples may lead to false interpretations.

A possible approach to learn how to deal with all these factors
which depend on the (unknown) object is to do a series of filtrationms
of the same radiograph starting with 'harmless' tomographic filters
whose transfer function is close to unity and continuing processing
with more "aggressive' tomographic filters until the image is dominated

by noise. This series can be repeated for different depths. By
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comparing the successive outputs like in a movie, the changes in the
structures can be examined in detail. Of course, doing this on a
routine basis may not be practical but it could be useful in future
experimentations with tomographic filters. This technique could also
be applied in certain cases when a new radiograph cannot be obtained

or a better radiologic technique is not available (e.g. old radiographs

from archives, remote diagnosis, etc.).

5.7 Suggestions for the Implementation of Tomographic and Enhancement

Filters in a Clinical Environment

The digital tomographic filtering in this thesis was done off-line
on a large-scale multiprogramming computer using batch processing. This
certainly is not a convenient realization for image processing. Except
for well established procedures, image processing should always be done
interactively, which requires a dedicated computer or terminal. The
necessary hardware can now be developed for real-time processing [787.

If a minicomputer is used, its limited capacity implies the use of auxi-
liary storage devices and longer processing time. However, the throughput
of a minicomputer is usually better than that of batch processing.

The equipment for the digitization and display of radiographs should
be carefully chosen according to the requirements. Enhancement techniques
for example, do not generally require as much resolution as tomographic
filtering.

Digitally refreshed displays should be used whenever possible.
Indeed, the digital refresh of a display has far superior stability and

signal-to-noise ratios than traditional commercial analog systems.
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From the economic point of view it might be more appropriate to
design a system with limited memory and display resolution, but designed
around a user scenario in which zooming, interpolation, magnification,
minification, panning, rolling, etc. provide an interactive facility
equal to if not more powerful for analysis purposes than a higher
resolution system [73].

Pattern recognition algorithms could be incorporated after the
tomographic filtration process. A data communication link could be
provided to permit the transmission of radiographs to and from other
instalations for remote consultation or diagnosis (telemedicine), for
teaching purposes, or for a better distribution of the computation
power. The tendency nowadays is to employ high resolution in the

transmission of radiographs [79].
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Chapter VI

COMPARATIVE EVALUATION OF TOMOGRAPHIC FILTERING

6.1 Introduction

In this chapter an objective performance assessment of tomographic
filtering is produced by comparing system transfer functions and
various quantitative performance parameters relevant to tomography,
such as the thickness of the tomographic layer, the rate of change of
the Modulation Transfer Function (MTF), and the signal to noise

ratio.

6.2 Objective Performance Assessment of Tomographic Filtering

The performance of tomographic filters was evaluated theoretically
in Chapter III and practically in Chapter V; the results were already
discussed. Here we produce a comparative assessment of tomographic
filtering taking as benchmarks two well established radiologic
procedures: standard tomography and conventional radiology; tomographic
filtering stands between these two, as shown in Figure 6.1. We will
quantify more that relative standing as well as the trade-offs among
these methods. We will be as much objective as possible without going
into details of clinical value and operational procedures (man-machine
interaction) which tend to be subjective.

First we discuss qualitatively the mathematical and physical
similarities and differences among the radiologic procedures in terms
of their transfer functions. Quantitative differences and trade-offs

are then examined by considering three fundamental parameters in
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STANDARD TOMOGRAPHIC
RADIOLOGY FILTERS

CODED X-RAY SOURCES

PROCESSING

STANDARD TOMOGRAPHY OF TOMOGRAMS

+ complexity

COMPUTERIZED TOMOGRAPHY

performance —-

Figure 6.1. Relative standing of several radiologic procedures (not to
scale).

tomography: the exposure angle, the thickness of the cut, and the

radiation dose.

6.2.1 The Transfer Function

The frequency-domain equation of image formation in radiology

(6.1) is derived in Appendix A (cf. (A.16) ).
d
G(fx,fy) = IB S(fx,fy) - d/; Hi(fx,fy,zi) Fu(fx’fy’zi) dzi (6.1)

where G(fx,fy) is the Fourier transform of the resulting image, IB is a

constant, Hi(fx,fy,zi) is the overall transfer function of the ith layer

at a depth Z.s and Fu(fx’fy’zi) is the Fourier transform of the (scaled)

distribution of linear absorption coefficients in the ith layer (cf. (A.15) ).
Equation (6.1) applies to standard tomography, conventional

radiology, or tomographic filtering by using the transfer function given

in (6.2), (6.3), or (6.4), respectively (cf. (A.14), (A.21), and (A.22) ).




Standard Tomography

z.-d A Z. —d iy z. -d M
H. (f f ,z.) = J/:/ﬂ 3 — X, —_—Y
vyl [Zi-Az Z. —Ag Zi-—Ag d

-j2ﬂ(fxx+f v)
X e Y7 ax dy (6.2)

Conventional Radiology

z,-d 2 z;-d z,~d -j2m(£ x+f y)
H.(f_,f ,z.) = 1 X , yr e YU ax dy
+ X y + Z. ° Z. Z.
1 1

. (6.3)

Tomographic Filtering

'zi-d'2 z,-d z;~d -jem(f x+£ ¥)
‘/:floi X, y§ e U dax dy
Z. Z. Z.
- 1
'zt-d'2 zt-d zt-d -j2ﬂ(fxx+fyy)
‘/:flog X , yt e dx dy
Z Z Z

- t- t t (6.4)

B, (af,25) =

where the depth of the tomographic layer is zt=A2, as usual,

In spite of the fact that the equations of image formation in
standard tomography, conventional radiology, and tomographic filtering
are similar, there are fundamental physical differences among these
methods. A good objective indication of performance of a radiologic
system is given by the overall transfer functions of the layers in the
object. The qualitative differences among these transfer functions are
discussed next, while various quantitative performance parameters will
be examined in the following sections.

The function Ib(-,-): The function Io(-,.) in (6.2) is substantially

different from the function IO(-,-) in (6.3) and (6.4). 1In conventional
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radiology IO(-,-) is defined over an area called the focal spot and the
edges of this intensity distribution are not sharp; examples of typical
focal-spot intensity distributions were shown in Chapter III. On the
other hand, in tomography IO(.,-) defines the movement of a point-like
X-ray source which is turned on and off over a line which can be
straight, circular, elliptical, spiral, hypocycloidal, etc. This means
that the blur in conventional radiology is more uniform in all
directions than in standard tomography. The uniformity of the blur 1is
the reason why the more complicated X-ray source movements are preferred
in tomography; the scanning of an area by an X-ray source has also been
considered in tomography, it has been referred to as areal tomography
[80, p.63]. Of course, the source of X-rays in tomography is also of
finite size but the blur that this produces is generally negligible

compared to the blur due to its movement.

Nature of the process: The transfer functions in (6.2), (6.3),
and in the numerator of (6.4) correspond to radiologic procedures,
while the transfer function in the denominator of (6.4) corresponds
to an image processing operation (inverse filtering). This means that
the errors and noise are of different nature in each case. In standard
tomography additional blur and/or errors occur if the patient moves
during the exposure and/or there are mechanical misadjustments. On the
other hand, in a tomographic filtration process the effect of a patient
moving is not so critical because the exposure time is shorter, but the
filtering process is not ideal in practice and noise is amplified by the

inverse filter, especially at high frequencies where the gain is greater.
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Transfer function of the tomographic layer: The transfer functions
in (6.2) and (6.4) are equal to a constant when zi=zt(=A2) while the
transfer function in (6.3) cannot be identically equal to a constanp
(except in the limiting case that zi=0 or Io(x,y) is an impulse). This
is the basic point in the analogy between tomographic filtering and
standard tomography, which has been studied elsewhere in this disser-

tation (cf. Chapter III and Appendix A).

Transfer functions of the out-of-focus layers: Even assuming an
identical IO(-,-) in every case (which is not practically possible)
generally the transfer functions in (6.2), (6.3), and (6.4) for the
out-of-focus layers are not equal. The characteristics of the overall
transfer functions of the out-of-focus layers in a tomographic filtra-
tion process have been studied in Chapter III. For an analysis of

the transfer functions in standard tomography see for example [48].

Quantitative performance parameters

The transfer functions contain all the information necessary to
compare the various systems. However, they are inconvenient to calculate
and compare, The first simplification is to ignore the phase transfer
function and consider only the magnitude transfer function, usually
referred to as the modulation transfer function (MTF). Nevertheless,
for easyness of comparison single number parameters are commonly used

in radiology. Those relevant to tomography are considered next.

6.2.2 The Exposure Angle

The most evident quantitative difference between a tomographic

filtration process and standard tomography is the size of the focal spot
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in radiology as opposed to the extension of the movement of the X-ray
source in tomography. They have a direct effect on the extension of
the blur and therefore on the thickness of the tomographic layer.

A typical size for a focal spot is of the order of 1 or 2 mm. while the
movement of an X-ray source varies from a few mm. in zonography up to
500 mm. and more in standard tomography.

In tomography it is more usual to give the exposure angle rather
than the extension of the movement of the X-ray source. The exposure
angle is defined as the angle through which the projecting ray of a
central point of the plane of cut moves during the exposure.

In conventional radiology and therefore in a tomographic filtration
process the exposure angle is determined by the size of the focal spot.
With a typical focal spot size of 2 mm. and focal spot to plane of cut
distance of 1000 mm., the exposure angle is 2 arctan 0.001 = 0.002 radians.
The following table gives the range of exposure angles for various

tomographic procedures:

Tomographic filtration process 5' - 15
Zonography 1° - 5°
Standard tomography 10° - 60°
Transversal tomography 7 120° - 170°

Thus, in terms of the exposure angle, a tomographic filtration

process is closer to zonography than to any other tomographic technique.

T Zonography is essentially standard tomography using smaller movements
of the X-ray source [5, p.360], [81, chapter 14], [82], [83]. Other
narrow-angle tomographic techniques are the following [81, pp. 7-8 and
300-311]: Stereozonography, narrow-angle stratigraphy, and orthotomogra-
phy.
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6.2.3 The Thickness of the Cut

Conventionally, in tomography therthickness of the cut is
defined as the distance between the two levels which have a tomographic
blurring BE:Bm that is insufficiently large to be noticeable in the
presence of the usual radiographic blurrings Bm [5, p.355]. In standard
tomography a reasonable choice for Bm is 0.7 mm. [5, p.355]. This is a
subjective definition+ and it depends on the amount of other blurrings
such as those due to the focal-spot intensity distribution and patient
movement. In a tomographic filtration process the tomographic blur is
based on the focal-spot intensity distribution, and the blur due to

patient movement is negligible because the exposure time is short.

- L4

Therefore the threshold Bm in a tomogranhic filtration process should be
chosen to be less than 0.7 mm. Since the definition of 'thickness of cut’
is already so fuzzy, here we neglect the effects of the focal-spot inten-
sity distribution and the high-pass filter characteristics on layers on
the film side. Hence, from (3.10), the thickness of the tomographic

layer is given by:

2
1

s (d1+d2) + Bm d1

2 Bm d
2t =

or in terms of the exposure angle @m:

28_d,
2t = (6.5)
Op (dy*dp) + By

In standard tomography the thickness of the cut is of the order of

a few millimetres, in zonography it is of the order of a few centimetres

+ A more objective definition has been proposed in [48] in terms of the
amount of attenuation desired and the spatial frequencies of interest.
A plot of the transfer function is required to make this calculation easy.
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and in a tomographic filtration process even larger. However for a
fair comparison the value of Bm should be changed accordingly, as
previously discussed. Indeed the minimum discernible blur in standard
tomography has a fixed component due to focal spot size and patient
movements, which are practically nonexistent in tomographic filtering.
Therefore, let the minimum discernible blur in tomographic filtered
radiographs be Bm/Kf where Bm is 0.7 mm. as usual in standard tomography
and Kf is an appropriate constant greater than one. Because of the lack
of experimental evidence we can only make an educated guess about the
value of Kf: we assume that a realistic value is at least Kf=2. Further-
more, computer processed radiographs can readily be manipulated, magnified,
contrast enhanced, etc. In particular, magnification is important here
because it is inversely proportional to the minimum discernible blur,
namely Bm/Kf/Km’ where Km is the magnification of the processed radio-
graph (not the radiologic magnification but the display magnification).
Since only a small portion of the radiograph, say 1 to 4 square inches,
will be processed at a time by the tomographic filter, this area can be
displayed at full resolution and thus magnification can be as high as
20; nevertheless in this calculation we will assume a lower value, say
Km = 10.

Consequently, taking into account the constants Km and Kf, (6.5)
becomes (6.6) for tomographic filtering.

2Bmd1

(6.6)
Kf]<mem(dl+d2)+ Bm

2t =

= 2, K= 10, and

Hence, assuming Bm = 0.7 mm., d1= d2= 1000 mm., Kf -

6m= 10', the thickness of the cut is 2t = 12 mm. for the tomographic
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filtration process. On the other hand in zonography, with K¢ = K, =1 and

6m= 3° we obtain 2t = 13 mm. and in standard tomography with 6m= 35° we obtain
2t = 1 mm. Of course, the display magnification of standard tomograms and
zomograns would also further reduce the apparent thickness of cut, however

this technique would not work so well in these cases because there are

other blurrings present (due to focal spot and patient movement).

It may seem that the thinner the cut the better, nevertheless there
are cases where a thick cut is preferred. Each special tomographic
technique has its own predilective applications [81, Chapter 14]. Inter-
active tomographic filtering offers the advantage that by computer
manipulation the apparent thickness of the cut can be changed by magni-

fication at the expense of reducing the field of view.

6.2.4 The Rate of Change of the Transfer Function

To further quantify the difference between tomographic filtering
and standard tomography we propose a new measure based on the contrast
between layers. Indeed, we will calculate and compare the rates of change
of the transfer functions in (6.2) and (6.4) from layer to layer for a
specific type of exposure function IO(',').

Equations (6.2) to (6.4) can be simplified by introducing FIO(fX,fy),

the two-dimensional Fourier transform of Io(x,y), and using the scaling

property (cf. Table B.1); thus we obtain (6.7) to (6.9), respectively.

z.- A Z.- A
B i 2 d 2 d .
Hi(fx’fy’zi) = FI (Z.— d A—l- fX s 7 - 4 ZT LY) (6'7)
o “i i
z; z;
= F
Hi(fx’fy’zi) I (z.— d fx > z,-d fy) (6.8)
o 1 i
z5 zy
: FIo(zi— d fx g z:- d fy)
Hi(fx,fy,zi) = . - (6.9)

where (6.9) is valid in a finite region around the origin in the frequency plane.
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We have now reached the point where to proceed with the comparison
we must make some assumption about the function Io(x,y), or equivalently,
its Fourier transform. We discussed in Chapter II that a Gaussian
function is a good approximation to the intensity distribution in actual
focal spots. In standard tomography Io(x,y) is not Gaussian in general
because it represents the movement of the X-ray source whose intensity
is usually constant during the exposure. Nevertheless, for the purpose
of this comparison we will assume identical functions Io(x,y) leading
to (6.7), (6.8) and (6.9), because what we want to compare is the rate
of change of the transfer function with respect to the mode of operation
{(i.e. movement or filtering) rather than with respect to Io(x,y). Thus,
in the specific case the Io(x,y) is a circularly-symmetric Gaussian func-

tion (see (6.10)), FI (fx,fy) is also a Gaussian function (see (6.11)).
o)

I (x,y) = exp {-ozxz —ozyz} (6.10)

F. (f,f) =L e _(flj-clj (6.11)
Loy T2 P % a, :

Substituting (6.11) into (6.7), (6.8) and {6.9) we obtain (6.12),

(6.13) and (6.14) respectively.

z.- A
il i 2 d 2 2
Hi(fx)fy)zi) (_)_—2_ exp‘}{— Zi_ d Z'l_ (fx + fy > (6.12)

2
z
™ ™ i 2 2 \ -
Hi(fx,fy,zi) —5 exp —[;5 P (fx + fy ;>} (6.13)
.

S 2\ [ | 2 2
ool (5| () | 7 5o

"

al=

H

Hi(fx,fy,zi)
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These formulae clearly show the low pass nature of the transfer
functions of standard tomography (6.12) and conventional radiology
(6.13). On the other hand the overall transfer function of a tomo-
graphic filtration process (6.14) can be low-pass (if z, > zt) or high
pass (if zs < zt) depending on the layer concerned.

The rate of change of the transfer function with respect to z; is
given by the first derivative of Hi(fx,fy,zi) with respect to z; . However,
since the transfer functions in (6.12) and (6.14) are both exponential
functions we will use as a measure of the rate of change of the transfer
function from layer to layer the derivative of the coefficient of fx2+ fy2

with respect to z; - The derivative of the coefficient in (6.12) is given

in (6.15) and the derivative of the coefficient in (6.14) is given in

(6.16).
2 2 z. - A
d i 2
yeu(z.) = 2fZ) & 1< (6.15)
ST "1 (G) Al d - Zi)S v
T 2 Zi
ye(23) = 285 d — (6.16)
(d - Zl)

Therefore, in standard tomography the slope yST(zi) is negative
if z; < AZ (i.e. between the film and the tomographic layer) and positive
if zs > A2 (i.e. between the tomographic layer and the focal spot). This
change of sign of the slope is due to the fact that the coefficient it-
self stays positive when the tomographic layer is crossed and it is zero
at the tomographic layer (i.e. the function has a minimum). On the other

hand in tomographic filtering the slope yTF(zi) is always positive because
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it is the coefficient that changes sign when crossing the tomographic

layer.  The ratio of the two slopes is given in (6.17).

(6.17)

Hence, whenever iF(zi)l > 1 the rate of change of the transfer
function from layer to layer is greater in a tomographic filtration
process than in the equivalent system using standard tomography,and

viceversa when {F(zi)l < 1. The ranges of Z; in each case are easily

calculated:
dA2
0 < Z5 < m—z— ]F(zi)l <1 (6.18)
dA2
L, <z, <d lr(zi)[ > 1 (6.19)

Consequently for the layers between the focal spot and the layer
at a distance dAZ/(Zd - AZ) from the film, the transfer function in
a tomographic filtration process varies faster from layer to layer than
in the equivalent system using standard tomography. It can be shown
that the interval dAZ/(Zd - Az) < z, < d always contains the tomographic
layer z, = AZ, hence in a region around the tomographic layer tomographic

filtering gives better contrast between layers than standard tomography.
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Examples (all distances in mm.)

200 &,

4 A, dd,/(2d - 8,) <z, <d d+ 2 K
1000 500 333.3 <z, < 1000 66%
1000 400 250 <z, < 1000 75%
1000 600 428.6 < zi < 1000 57%

where the last column represents the percentage of the space between
the focal spot and the film where tomographic filtering gives better
contrast.
Specific values of the slopes can be obtain by substituting values
in (6.15) and (6.16). Indeed, assuming ¢ = 2, d = 1000, and Al = A2 = 500

we obtain the following results:

Z4 Yor(Z;) Yop (25)
0 -0.49% 0

100 -0.545% 0.07%
200 -0.585% 0.15%
300 -0.57% 0.43%
400 -0.46% 0.91%
500 0 1.97%
600 1.5% 4.6%
700 7.3% 12.8%
800 37% 495%
900 395% 444%
1000 o0 =

The previous analysis has assumed identical exposure functions
Io(x,y) in each case as defined in (6.10). We are now going to repeat
the analysis assuming different ¢'s in (6.10) both for tomographic

filtering and standard tomography, but the shape of Io(x,y) is still
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the same in both cases, a Gaussian function. Equations (6.15) and

(6.16) thus become (6.20) and (6.21) respectively.

iy 2 d2 Zi- A2
Yer(z:) = 2{=—} +— ——r— (6.20)
ST (%ST) b - zi)3

' 2 z.
YTF(Zi) =9 oﬂ d i . (6.21)

TF d - z.)

1
Their ratio is
Yo (Z) o 2 A z
F(Zi) - VTF(zl) OST 7%- vA —lA (6.22)
ST "1 TF i 2

and ‘F(zi)l > 1 whenever the following inequality is satisfied:

2 2
Orp 4 2, Opp 4 8,
5 3 <z, < 3 5 (6.23)
o] d+co A 1 o-.d - 0o, A
TF ST 1 TF ST 71
Assuming OTF = 2 and GST = (0.005, d = 1090 and A1= A2 = 500, we

obtain

499.,9 < z, < 500.1

Thus now the region where the rate of change of the transfer
function of a tomographic filtration process is greatef than that of
standard tomography is very narrow indeed, practically negligible;
however it always includes the plane of cut. This suggest that the
use of the term '"thickness of the cut' may not be as relevant in
tomographic filtering as it is in standard tomography.

The absolute values of the slopes yST(zi) and yTF(zi) in the

examples given previously now differ by an additional factor
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2
o 2
TF 2 j>
— } =(—==Y = 160,000
( Ogr > <p.005

in favour of standard tomography because of the different size
(scalings) used in this example.

Hence the percentage of the space between focal spot and film
in favour of tomographic filtering is now

2 2

200 OTF OST AlAz ]
% (6.24)
04 d2 04 Az
TF T UsT "1
If Orp > Ot (6.24) can be approximated by (6.25).
200 02 ALA
ST 22 (6.25)
o] d
TF

which in the previous example amounts only to 0.003%.

In conclusion then, the operation of tomographic filtering gives
better layer contrast than standard tomography in an interval around
the plane of cut. However, if the normal sizes of the exposure
function are taken into consideration, the performance of standard

tomography is by far better because that interval is negligible.

6.2.5 The Signal to Noise Ratio

In this section tomographic filtering is evaluated further by
studying the effects that system parameters such as focal spot size have
on the results; thus allowing comparisons between systems. This evalua-
tion is done in terms of the signal to noise ratio which is defined as
the ratio of the power of the signal from the plane of cut if it was the
only one present in the object and the power of the noise contributed

by all other planes. The signal to noise ratio, as defined here, provides
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another measure of the contrast of the image of the plane of cut with
respect to the others.

In this analysis the object, represented by the distribution of
linear attenuation coefficients u(xi,yi,zi), is considered to be a random

process with parameter space X;5YisZs- It is convenient to express
u(xi,yi,zi) as a function of the coordinates on the film plane, that is
- ' d -z, d - z,

(cf. (A.15) ): X5 =-~?r~£ x and y; = r y

Therefore:
d - zi d - zi )

Let the two-dimensional correlation function of this random process

with respect to the first two parameters be

d - zi d - zi
Ru( T 3 s 25 (6.26)

3\
The two-dimensional power spectral density function of this random
process is given by the two-dimensional Fourier transform of (6.26),

which is given in (6.27).

, d - zi d - zi \
Sl )

H

Su.(fx’fy’zi)

i
-j2n (£ _x+f_y)
x e XY ax dy
/ / \
) ( d }2 S (d d ¢ . 4 ¢ Zi)
d - z5 md - zi X -z y

(6.27)

where S is the two-dimensional Fourier transform of Ru'
U

For example, if the random process is white noise Su is given by (6.28).
i

S (f ,f ,z.) = (——5L~—)2 S. (6.28)
My x’7y1 @ - zi o)
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where SO is a constant for all fx’fy and 2, If this noise is

bandlimited between -W and W, the power spectral density function is:

[ {_a )\?
s for -W.sf , f <W,
d - z; o} i x y i

(6.29)

wn
o~
»
H)
N
j—
]
N

0 otherwise

where W.1 =1 W

Following a derivation similar to that in Section A.2 (ch.(A.16)},
Appendix A), it can be shown that imagining the random process
u(xi,yi,zi) results in an image which is also a random process with
power spectral density Sg(fx,fy) given by (6.30).

d
2 : 2
f )= § - f .) dz,
Sg(fx, y) I3 S(ffx,fy) f I Hi(fx,fy,zi)l Sui(x,fy,zl) Z,
o
(6.30)
where IB is a constant and Hi(fx,fy,zi) is the overall two-dimensional

transfer function of the ith layer at a depth Z, -

IB is given by (A.8a) divided by the DC gain of the tomographic filter
if present, Hi is given by (6.2), (6.3) or (6.4) depending on the

type of radiologic process considered and Su. is given by (6.29).

We can now determine the power in the image ;hich is given by (6.31).

P = ff 8, (£ 0f,) df, df (6.31)
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To determine the signal to noise ratio we separate the power component
due to the image of the tomographic layer (Pt) and the noise power

due to the other layers (Pn). It is also useful to separate the noise
power due to layers between the anode and the plane of cut (Pa) and
the noise power due to layers between the plane of cut and the film

(P These powers are related as follows:

£

P=P +P =P +P +P (6.32)
n_ ot a

f
If z, is the depth of the plane of cut and 2t is its thickness,
expressions for these powers can be obtained from (6.30) as indicated

in (6.33) to (6.36)

P = p(zf,za) (6.33)
Pt = p(zt t,zt + t) (6.34)
Pa = p(zt + t,z ) (6.35)
Pf = p(zf,zt - t) (6.36)

where the function p(zl,zz)is defined in (6.37) and the depths z,

and Zg determine the limits of the object (OSZfSZan).

Z
2 2
p(z,2,) = (- d/l/' [z | S, (F0F 2,04 df)

1

S

(6.37)

The corresponding signal to noise ratios (SNR) can then be calculated

as follows:

o
=
o]
—~
(3]
|
o+
-
(3]
+
o+
—

SNR = =% = = (6.38)
%
n a f
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SNR = -= = (6.39)
a Pa p(zt + t, za)
P plz, - t, z_ + 1)
SNRf = l_a‘t— = )t(z - E ) (6.40)
£ Plegr %t
It is easy to show that
1 _ 1,1
SNR SNR SNR (6.41)
a £
or
SNR x SNR
SNR = 2 f (6.42)
SNR _+ SNR .
a f

To proceed with the evaluation we consider the case where the intensity
distribution in the focal spot is a Gaussian function, as justified in
Section 6.2.4 (recall (6.10) ), and the object is bandlimited white
noise (recall (6.29) ) with S0 small, to conform with the approximation

in (A.6). Therefore:

22 2 2 o
ff Io(xo’yo) dxo ¥, - /f exp {-0x, - 0¥, ! dx, dy, = 52

(6.43)

Although the SNR does not depend on the energy in the focal spot, we
consider the case where this energy is a constant indepent of ¢ to
allow a more meaningful comparison of powers when o varies.
Consequently:
02 2.2 2 2
Io(xo’yo) & - exp f-oxg -9 % }
and

ff Io(xo,yo) dxo dyo =1




And if the DC gain of the tomographic filter is also normalized to

unity, then IB=1 in all cases. Hence,

_ m, 2 2 2 ‘
Hi(fx,fy,zi) = exp {- (EJ Bi(fX + fy)} (6.44)

where (6.44) is derived from (6.12), (6.13) and (6.14) and Bi is

given by the following table:

Procedure E Bi
: Z. - Az d 2
Standard tomography ' (——2 2 (6.45)
z. -d A
i 1
Z, 2
Conventional radiology : (Z i d) (6.46)
i
zi 2 zt 2
Tomographic filtering : (———5) - ¢ ) (6.47)
z. - d z. - d
1 t
and finally:
d \?
S (f,f ,z.) = (___,_) S for -W. < f_,f_ < W, (6.48)
sy x’ Ty’ i d - z. o) i X’y i
d - z.
where W. = — 1y
i d

Also, to make the results more general, lets assume that the tomogra-
phic filter is bandlimited between -fC and fc’ as discussed in

Section 3.2.2 (recall the low-pass filter Ho(fx,fy) ).
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Now we can calculate the following integral (refer to (6.37) )

Z
Y 2 ]
p(zy,2,) _j [ff | H, (£0€.2;) I 5, Epofyrzy) dfy dny dz,
Z
1

1

(6.49)

Substituting (6.44) and (6.48) into (6.49) we obtain:

2 £ 2
(z,,2,) ==d/ﬂ o ex {—2(39 B (f2 + f2)1
Plega%) 5 P o i Tx yo°

1 —fm “m
BUERY
&r—*-> S df df dz. (6.50)
-z o 'x 'y i

S do.? (2 1 1 2 w2 2

-2 dy f L 8% (2(0? B, £2) dz, (6.51)
g 1 m 1

Z (d - Zi) {Bil

where fm = min(fc,wi) and ® (x) is a generalized form of the error

function to include positive exponentials, as defined in (6.52)

i 2
3 (x) g_z_f e (6.52)
/170
2n+1
o 2
2 [ 7 (seno )" Ix] X
B S [nio n!(2n + 1) (6.53)

When x>0 , the function @(x) is the well known error function for

the square root of the argument, that is

d(x) = erf (Vx) for x>o (6.54)
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When x<o, the function ¢ (x) is calculated here using the power
series in (6.53) which is absolutely convergent for all real values
of x.

Therefore, (6.51) can be calculated to determine the signal to
noise ratios in (6.38), (6.39) and (6.40). Since the SNR is a
function of several parameters characteristic of the radiologic
process such as SO, g, d, Zt’ W and fc’ whose influence over the SNR
is not obvious, equations (6.38), (6.39) and (6.40) were evaluated
for more than 4000 cases using (6.51). The integral in (6.51) was
calculated using Simpson's rule with 1 mm intervals. The value of
d was 1000 mm in all cases. The size of the focal spot, determined
by o (the larger o is, the smaller the focal spot is), was varied between
0=2 and 0=10 (in mm_l) for all combinations of the other parameters.
The total thickness of the object was 264 mm in all cases (assumed to
be the thickness of a typical chest). The plane of cut was always
in the center of the object but the position of the object was varied
to observe the effect its position would have on the SNR. Thus,
three cases were considered: z, = 500 mm (object is exactly in the
niddle between the focal spot and the film), z, = 520 mm (object is
closer to the focal spot) and z, = 480 mm (object is closer to the
film). The thickness of the tomographic layer (2t) was varied
between 4 mm and 240 mm (t = 2, 10, 20, 50, 100 and 120 mm).

Two types of object power spectra were considered: white noise
(W = =) and bandlimited white noise (two different bandwidths: W = 4

and 5 cycles/mm), with SO = 10-2 10_5 and 10_8 (recall 6.48). The

>

image given by each type of object was bandlimited by the low-pass

filter Ho(fx,fy) using two cut-off frequencies fc = 3 and 4 cycles/mm.
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The correspondence between object bandwidth and filter bandwidth

was as follows (all units in cycles/mm):

W e
© 3
o 4
4 3
5 4

These frequencies were chosen so that when the object is bandlimited
white noise, the low-pass filter has no effect, that is the image 1is
only bandlimited by the bandwidth of the object itself.
Since it is impractical to include here all the results obtained
only sufficient summary tables are produced to support the conclusions.
The following data were selected from the results to show the
effect on the SNR by parameters such as the nominal thickness of
the cut, the position of the object between focal spot and film, the
size of the focal spot, and the bandwidth of the object and the low
pass filter. These selected results are given in Tables 6.1 to 6.5.
Table 6.1 shows the variation of the SNR with the thickness of
what is considered to be the tomographic layer. It is clear that
the SNR (also SNRa and SNRf) increases with the thickness of the
tomographic layer, as expected, because of the definition of the
SNR (recall (6.38), (6.39) and (6.40) ).
Table 6.2 shows the variations of the SNR with respect to the
position of the object between the focal spot and the film. When
the object moves closer to the focal spot the SNR increases in

standard tomography but in conventional radiology and tomographic
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Table 6.1, The signal to noise ratios versus the thickness of
the cut

Fixed parameters: d = 1000 mm, z, = 500 mm, ¢ = 10, W =5 cycles/mm

fc = 4 cycles/mm.

|

t(mm) = 2 10 20 50 100 | 120
Standard ;
tomography i

SNR 0.017 0.089 | 0.19  0.67 3.6  1l.

SNR_ 0.033  0.18 0.39 © 1.3 7.1 | 23.

SNR 0.033 © 0.18 0.39 1.3 7.1 @ 23.
Conventional 1
radiology

SNR 0.015  0.081 , 0.18 0.60 3.1 9.8

SNR_  0.036  0.19 | 0.43 1.5 8.3 27

| |

SNR .~ 0.026 ~ 0.14 = 0.3 0.99 4.9 = 15.
Tomographic , : :
filtering ‘ : ‘ ' : i

SNR  0.013 © 0.068  0.15  0.48 2.3 7.4

SNR 0.045  0.24 0.55 2.1  13. 47.

SNR © 0.018  0.093 @ 0.2 ' 0.62 2.8 8.7
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Table 6.2. The signal to noise ratios versus the position of
the object

Fixed parameters: d = 1000 mm, ¢ = 10, t = 20 mm, W = 5 cycles/mm,

fc = 4 cycles/mm

1 2, (m) = 480 500 520

Standard

tomography
SNR 0.193 | 0.194 ; 0.195
SR 0.386 : 0.388 0.391
SNR l 0.386 0.388 0.391

Conventional

radiology
SNR 0.177 0.176 0.176
SR, 0.426 0.427 0.428
SNR. 0.301 ; 0.300 0.299

Tomographic

filtering :
SNR ' 0.150 0.145 0.140
SNR 0.536 0.551 0.567
SNR. E 0.209 0.197 0.185
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filtering the SNR decreases. To explain this effect we look more
closely at the variations of SNRa and SNRf. In conventional radiology
and tomographic filtering SNRa increases and SNRf decreases when the

object is moved-towards the focal spot. Since SNRf dominates over

SNRa (SNR,. < SNRa) SNR also decreases.

f
A similar argument is in order with regard to the size of the focal

spot, as shown in Table 6.3. Indeed, increasing the size of the

focal spot causes an increase in size of the system impulse response

and moving the object (or the plane of cut) closer to the focal spot

also causes an increases in the extent of the impulse response.

Consequently, an increase of the impulse response size causes an

increase of SNR in standard tomography and a decrease of SNR in

conventional radiology and tomographic filtering, where SNRa increases

but SNRf decreases, resulting in a decrease of SNR. These results are

in agreement with the conclusions drawn from the practical results in

Chapter 5, where the difficulty of filtering for layers closer to

the focal spot was recognized (cf. Section 5.3.2). One might be

tempted to conclude here that a smaller focal spot would be preferred

for tomographic filtering. Although this may be true with respect

to noise in the image, it is important to recognize that the 'noise!

due to the presence of other layers is highly structured and not

white noise as assumed here. Consequently, larger focal spots may

still be preferred (recall (6.16) ). Since in practice the focal

spot is given, the best results will be obtained by adjusting the

filter parameters such as the magnitude hard-limit and cutoff

frequency.
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Table 6.3. The signal to noise ratios versus the size of the
focal spot

"

1000 mm, z, = 500 mm, t = 20 mm,

Fixed parameters: d N

W =5 cycles/mm
I
%

g = 2 4 6 8 ! 10 !
Standard
tomography

SNR 0.490 0.270 0.221 ©0.203 } 0.194

SNRa 0.980 0.541 - 0.442 0.406 : 0.388

SNRf i 0.980 . 0.541 0.442 0.406 0.388
Conventional
radiology |

SNR 0.164  0.165 0.168 0.173  0.176

SNRa g 0.470 - 0.470 0.465 0.447 0.427

SNRf ‘ 0.253 0.254 0.264 0.283 0.300
Tomographic
filtering

SNR 7.710°% 9.5 107 3.5107° 0.11  0.15

+2
SNRa 1.3 10 °© 2.1 0.96 0.67 0.55
-23 "’5 '2 -4
SNRf 7.7 10 9.5 10 3.5 10 0.13 0.20
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Similar results are obtained with variations of the bandwidth
of the object (Table 6.4) or the bandwidth of the low-pass filter
(Table 6.5). In standard tomography the SNR increases when the
object bandwidth or the cutoff frequency increase. On the other
hand in conventional radiology and tomographic filtering the SNR
decreases because it is dominated by SNRf which decreases. Note
also that when the object is bandlimited white noise (i.e. when
Ho(fx,fy) has no effect) in standard tomogfaphy SNRa is equal to
SNRf.

When the system parameters are the same (that is, any column

in Tables 6.1 to 6.5) the signal to noise ratios compare as follows

{(the arrows denote how they increase):

SNR SNR SNR
a f —

Standard tomography 2
Conventional radiology T
Tomographic filtering

Therefore, the SNR is largest for standard tomography and smallest
for tomographic filters. From this we cannot conclude that tomo-
graphic filters are useless because with real objects the noise is
structured and the SNR may be perceived differently by the eye.

On the other hand, SNRa is always largest for tomographic filters,
which shows that the tomographic filtering technique performs

better for layers in the object closer to the film.

6.2.6 The Radiation Dose

The goal in diagnostic radiology is to obtain as much
relevant information as possible from inside a patient's body, while
keeping the total radiation dose to a minimum to reduce any possible

danger to the patient.
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Table 6.4. The signal to noise ratios versus the bandwidth of

the object

Fixed parameters: d = 1000 mm, 500 mm, o =
W(cycles/mm) = 4 5
Standard
tomography

SNR .189 .194
SNRa .377 . 3838
SNRf 377 .388
Conventional
radiology
SNR .178 .176
SNRa .408 .430
SNRf .316 300
Tomographic
filtering
SNR é .164 .145
SNRa .478 .550
SNR .250 .200

f




Table 6.5. The signal to noise ratios versus the cutoff
frequency.

H

Fixed parameters: d 1000 mn, z, = 500 mm, ¢ = 10, t = 20 mm,

t
W

» (100 cycles/mm)

fc (cycles/mm) = 3 4

Standard

tomography
SNR 0.192 0.211
SNRa 0.308 0.349
SNRf 0.508 0.537

Conventional

radiology
SNR : 0.186 0.177
SNR,, 0.428 0.460
SNR,. | 1.176 ~ 0.288

Tomographic

filtering
SNR ‘ 0.180 0.124
SNRa 0.571 0.841
SNRf 0.262 0.146
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Each radiologic procedure represents a compromise between dose,
and image and diagnostic qualities [84]. Standard tomography must be
regarded as a relatively high exposure-dose procedure and it is used
only when there are specific indications which outweight the risks
[81, p.314]. The radiation dose per exposure, typically 1-2 rad., is
comparable to conventional radiology, but the total dose is usually
greater since multiple exposures are the rule. Indeed, since the
location of the relevant structures is not usually known, various
tomograms have to be obtained until their positions are known; this is
especially true in the case that the details are small. It was
formerly believed that the dose in standard tomography could be kept
low using a simultaneous multisection technique: Instead of using just
one film, several films (typically five or six) are contained in a
multicassette box and spaced at about 1 cm. apart. However the total
dose to the patient is not reduced if intensifying screens are used, in
which case the patient dose is comparable to the one with the same
number of single section exposures [85].

Here the advantage of a tomographic filtration process is clear.
With a single radiograph and tomographic filtering operations an indi-
cation of the positions of the structures can be obtained. Once they
are known, a subsequent thin-section tomogram at the proper depth using
standard techniques may give a more accurate representation. Indeed,
it has been suggested [84] that a diagnostic hierarchy could be formu-
lated which would significantly reduce the total radiation levels to

which specific types of patients are exposed. A tomographic filtration
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process would fit well in such a hierarchy, especially when on-line
image processing and communication systems [86] are available in
hospitals which will facilitate the storage, retrieval, processing,

and display of the pictorial data.
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Chapter VII

CONCLUSIONS AND RECOMMENDATIONS

7.1 Summary and Conclusions

In this dissertation we have introduced, analyzed and
implemented a new class of filters for tomographic deblurring of
conventional radiographs. Initially we proposed and studied a
detailed model for the radiologic process, which revealed the
physics and mathematics of the formation of the X-ray images.

The salient feature of this model and the analyses throughout

this dissertation has been the consideration of what happens when
three-dimensional objects are imaged by X-rays. Problems of non-
linearities and space-variance were disclosed and a number of
solutions and approximations were discussed to make the system
tracpable. The model was used to determine the characteristics of
tomographic filters for selective deblurring of the images of

the layers in the object. Tomographic filters have inverse filter
characteristics. Although the transfer functions of different
layers have the same shape, selective deblurring is possible
because they differ by a scaling factor. The effect of
tomographic filtering on overlaying layers was investigated.

It was found that the overall transfer functions have lowpass
characteristics between the tomographic layer and the focal spot
and highpass characteristics between the tomographic layer and

the film.
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Interactive optical, electro-optical, or digital signal processing
facilities are necessary for the implementation of tomographic filters.
We have developed a realization using two-dimensional digital signal
processing techniques because of the advantages over optical processing
previously discussed. In addition, digital computers can be used to
perform operations of pattern recognition or artifical intelligence,
either fully-automated or semi-automated, interacting with a radiologist.
The growing interest in digital techniques for image processing has re-
sulted in the appearance of some very recent books on the subject by
leading researchers in this field [77], [87]-[90].

The two types of digital filtering techniques, recursive and non-
recursive have been considered. The windowing design technique and
non-recursive im?lementations using the FFT weré chosen for this
application. Indeed, although recursive realizations may be faster
than non-recursive filters and require less memory, the design of
recursive filters to approximate arbitrary magnitude and phase responses
requires a fair amount of computational power. Since the filters designed
in this dissertation were used only a few times it was not advisable to
decrease the execution time at the expense of increasing the design time.
For the same reason no attempts were made to optimize the length of the
impulse response. The data management problems associated with the
processing of large matrices in a digital computer were discussed and
solutions proposed. Some of the digital signal processing techniques
developed in this dissertation have already made an impact in the
literature. Indeed the IIR filter design techniques presented in

Section 4.4 have been applied by Harrison [99] to the processing of
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geophysical data for the point determinations of ore grade from a
Canadian copper mine. An alternate extension of this design method
which facilitates frequency response optimization via nonlinear
programming has been published by Goodman [100]. Goodman's filters
also make use of the spectral transformations introduced in Section 4.5
(published in [65]). O'Connor and Huang [101] have generalizedthe
result in Section 4.5 [65] and presented a stability preserving mapping
theorem which allows most recursive filters of a particular type to be
mapped into another type of recursive filter.

The theoretical and practical evaluations of the performance of
tomographic filters have shown that the image quality results cannot
be as good as those of standard tomography or three-dimensional radio-
graphic reconstruction techniques in terms of the thickness of the
tomographic layer. Nevertheless, a tomographic filtration process
allows the image analyst to interact with the system to exploit its
capabilities, rather than being a passive observer of an image. A
tomographic filtration process has also the advantage that it can be
implemented without the use of any special purpose X-ray hardware and
while other tomographic procedures use moving parts during the exposure
and depend on ﬁultiple exposures to obtain additional information from
a patient's body with the consequent increase in radiation dose to
the patient, a tomographic filtration process uses instead multiple
filtrations of a single radiograph without endangering the patient.

A measure of the rate of change of the transfer function
from layer to layer in a special case (i.e. with a Gaussian exposure

function Io(x,y)) has shown that in an interval around the plane of
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cut tomographic filtering offers a higher rate of change than standard
tomography but that interval becomes negligible when actual distances
are used. Examples of the size of that interval in various cases

have been given.

Finally, the SNR has served as a valuable tool in providing a
better understanding of the mathematical behavior of the various
radiologic procedures such as standard tomography, conventional
radiology and tomographic filtering, as well as allowing comparisons
between systems.

In conclusion then, tomographic filtering is a new technique
that may find practical applications in diagnostic radiology,
especially when used interactively. Its main advantage is that it
can be used with conventional radiology equipment and its main
drawback is the noise generated by the high-pass filter effect on

the layers in the film side.

7.2 Recommendations for Future Research

The work presented in this dissertation constitutes a first
approach to the problem of recovering three-dimensional information
from a single radiograph. We have concentrated on proving the feasibility
of tomographic filters from a technical point of view and we have developed
methods for their digital implementation. Both analytical and éxperimental
evaluations were performed; however the usual limitations of time and
cost precluded the possibility of more extensive tests. There are both
short term and long term possibilities and both are considered here.

¢ development of the appropriate image processing hardware

(including image acquisition, storage, retrieval and

display).




development of the appropriate utility functions in software
(e.g. magnification, minification, intensity mappings, etc.)
development of information quality standards so that the
results of experiments can be judged accordingly and rules
can be set for calibration of experiments.

evaluation of different methods to overcome the problems of
inverse filtering.

evaluation of other filter structures for tomographic filtering

(e.g. homomorphic, Wiener, etc.).

investigate the use‘of recursive filters for image restoration
(e.g. "recursive tomographic filters').

effects of the order of the tomographic filter on the quality
of the results.

effects of computer wordlength, mode of arithmetic, roundoff
errors, etc., specifically to the application.

study further the fact that tomographic filtering produces

a high-pass overall transfer function between the tomographic
layer and the film. is that really a disadvantage or an
advantage?

investigate the ''tomographic filtering of tomograms', that

is change the plane of cut of a tomogram by means of tomo-
graphic filtering.

investigate what shape and size of focal spot X-ray intensity
distribution (i.e. the exposure function Io(x,y)) are more
desirable taking into account the trade-offs: e.g. larger
focal spots give better depth resolution but restoration is

difficult.




» medical evaluation of tomographic filtering taking into account
the variables dependent on the human body such as position and
size of lesions, overlaying structures (e.g. ribs), exposure,
geometry, direction of the projectibn, etc., in order to find
out for what applications (e.g. type of disease, organ, lesions,
etc.) would tomographic filtering be preferred over other methods
in the medical imaging hierarchy.

¢ investigate the use of tomographic filtéring as a pre-proces-
sing techhique for automated pattern recognition processes,

s investigate the problem of identifying the blur characteristics
from the radiograph itself, using the techniques of power
spectrum and power cepstrum estimation (refer to example

in Appendix A, Section A.7).

s investigate other areas of application of the tomographic
filtering concept (e.g. geophysics, astronomy, image
analysis, etc.)

e study the man-machine interaction human factors, in particular
the novel image perception and analysis methods required by
interactive tomographic filtering and investigate the
possibility of a new profession: 'medical image analyst"
and/or '"medical image specialist" [98] which would require

backgrounds in engineering, psychology and medicine.

Considering all the previous variables, the medical evaluation
of processed radiographs is left for the experts in this field, such
as a panel of radiologists with the appropriate interactive image

processing facilities.,
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Our hypothesis about the future of computers in X-ray diagnosis is
the following: Interactive systems should be developed to combine the
judgement of a human specialist with computation power in solving the
problem of the diagnoses of radiographs. The development of more
intelligent algorithms would alleviate the tasks of radiologists and
improve the accuracy of the diagnoses. The processing of images by
computer and the availability of visual terminals throughout hospitals
would facilitate the storage, transmission and retrieval of radiographs

and other medical imagery.
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Appendix A

THE MATHEMATICS OF TOMOGRAPHIC FILTERING

A.1 Introduction

In this appendix the mathematics of standard tomography, conven-
tional radiology, and tomographic filtering are studied in depth and
compared. The analogy between standard tomography and tomographic
filtering is further clarified by this analysis.

First a mathematical model of standard tomography is derived.

It is shown that a tomogram can be filtered to change the depth of the
plane of cut and the transfer function of such a filter is derived.

A mathematical model of conventional radiology is then obtained by
considering conventional radiology as a special case of standard
tomography, in which the plane of cut coincides with the film and the
movement of the point source is replaced by a finite-size source.

Again it is shown how tomographic filtering can convert a radiograph
into a tomogram. Finally, the algorithm used to simulate the radiologic

process in a digital computer is described.

A.2 A Mathematical Model of Standard Tomography

The derivation of an equation describing the image formation process
in standard tomography will serve to derive the equation of image
formation in conventional radiology and to compare tomographic filtering
with standard tomography.

This derivation was motivated by that in [48]. We have removed some

of the constraints in [48] (namely, the linear movement of a constant-
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intensity X-ray source), while we have added others relevant to this
application (namely, small displacements of the X-ray source).
Nevertheless, none of these constraints imply a lack of generality in
the derivation. The notation has been kept consistent with that of
Chapter II. Readers without a background in linear system theory will
find this derivation more clear than that of conventional radiology in
Chapter II, although the result is essentially the same, as it will be
shown in the following sections.

Consider the diagram of standard tomography shown in Figure A.l.
In our model, the punctual X-ray source can move anywhere in a plane
parallel to the film. This movement can be linear, circular, spiral,
etc., even the scanning of an area may be considered. Generally the
intensity IO of the X-ray source may change with its location. In
standard tomography the film also moves in synchronism with the X-ray
source to keep the desired plane of cut in focus.

Suppose a reference coordinate system Xx,y,z with origin at O.
The coordinates of a point in a plane at a depth z; are denoted by
(Xi’yi)° Let A; and d be the distances from the X-ray source to the
plane of cut and to the film, respectively. Thus, A: & d-A; is the
distance from the plane of cut to the film.

When the source of X-rays is at (xo,yo), the coordinates of the

centre of the film (xc,yc) are given in (A.l).

X, = K X, (A.la)
Yo K Yo (A.1b)

where
K= - A/M (A.2)




Ay

Az Z.

Figure A.1l.




Thus, the relationship between the absolute coordinates (x,y) on
the film plane and the coordinates (xf,yf) of a point in the film with
respect to the centre of the film is given by:

X =X, *Xp= K X, * Xg (A.3a)
y =y +yf=KyO+yf (A.3b)

The coordinates (xi,yi,zi) of any point in the space between the
film and the focal spot can be expressed as a function of (xo,yo) — the
point of origin of the X-ray passing through (xi,yi,zi), and (xf,yf) -
the point of impact of that X-ray on the film:

(zi-Az)xo d-z

X, = + X (A.4a)
i Ay d f

(zi-Az)yo d-z
y. = + Ye (A.4b)
A d

For a punctual source of X-rays at (xo,yo) emitting an intensity

Io(xo,yo;xf,yf) towards the point (xf,yf) on the film, the intensity

I(x ,yo) reaching that point is (c¢f. (2.2) ):

£7 8%
T(xpYpsX sY) = Io(X Y 3Xesye) exp ;—./Z M(x;5y5025) ds (A.5)
where u(xi,yi,zi) is the function representing the distribution of
linear attenuation coefficients and s denotes the path between (xo,yo)
and (xf,yf).

Approximations

1) Io(xo,yo;xf,yf) can be assumed with good approximation independent
of (xpyp) [48]. Thus, I (x.,Y 5Xgye) = I0(X,Y0)-

2) ds is replaced by dzi
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dzi dzi xg+y§
ds = = ‘/ 1 + tan26 dzi = 1 + dzi
cos 9! cos © A%

If the displacements of the X-ray source are small compared to the
distance from the X-ray source to the plane of cut, then X5sY, << Ay,

in which case ds=dzi.

3) Since the values of the linear attenuation coefficients, or at least
their variations from point to point, are small, the exponential in
(A.5) can be approximated by the linear terms of its Taylor series

expansion [48].

Therefore, taking into account all these approximations, (A.S5)
becomes:
d -
T(ies¥ £5%007) = To (5gs7) [1 - meprgep 6 | e
When the source of X-rays moves and its intensity is given by Io(xo,yo)
while the film also moves simultaneously as defined in (A.3), the total

intensity after the exposure at any point (xf,yf) on the film is

I(xesye) = /] L(xpsyesX 5y,) dx  dy, =
d
/] I (x,5Y,) { 1 fo (X 5Y5s2) dzi] dx_ dy_ =

d
= IB -j; Il(xf’yf’zl) dzl (A.7)
where
Iy = ”Io(xo,yo) dx ) dy, (A.8a)
L. (XgsYgr2y) = ﬂlo(xo,yo) H(x;5y5,25) dx o dyg (A.8b)
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and the values of X5 and y; are given in (A.4) as a function of X s Yyo

Xgs yf, and Zse

Replacing (A.4) into (A.8b) we obtain

Ii(xf’yf’zi) = [[ IO(XO’YO) x

((zi—Az)xo d-z. (zi—Az)yo d—zi
X U

Ay d Ay d

Make the following change of variables:

(zi—Az)xo d-zi zi—d Aq
———— £; xo= — &3 dXO=K. dg
A]_ d Z.—Az d
i
(zi-Az)yo d-—zi zi-d Ay
—_— = - ns Yy = —nN; dyO = Ki dn
Al d Z.—Az d
i
where
zZ.-d A]_
Ki = 1 ——
Zi“Az d

Thus, by replacing (A.10) into (A.9) we obtain (A.11l).

’ d--zi d—zi
Ii(xf’yf’zi) = Kl IO(KlE:Kiﬂ) u (Xf"g): - (}’f'ﬂ),z

d d

(A.10a)

(A.10b)

(A.10c)

i) dg dn

(A.11)

Since (A.11) is a convolution, in the frequency domain it becomes

a product (cf. Table B.1):
Gi(fx,fy,zi) = Higfx,fy,zi) Fu(fx’fy’zi)

where

-jZW(fXx+fyy)
Gi(fx,fy,zi) = ff Ii(x,y,zi) e dx dy
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z.-d A z.-d A, -j2m(f x+£f y)
H. (£ £ ,z,) Ki I [ ——x———y] e XY gx dy
Xy z.-bp d z,-hp d

(A.14)

d—z.1 d—zi ©=j2m(f x+£f y)
M X, Y,2Z. e X YU ax dy (A.15)
d d .

Replacing (A.12) into the Fourier transform+ of (A.7) we obtain

P (fof,02)

(A.16).

d
Iy 8(£,,5) - fo Gy (£0£,25) dz;

G(£,,£)

d
Iy 8(£,£) - fo Hy (£ ,25) F(£L5),2) dz (A.16)

where G(fx,fy) is the Fourier transform of the tomogram I(xf,yf)
(cf. (A.7) ) and Hi(fx,fy,zi) is the transfer function of the ith layer,
at a distance zs from the film, as given in (A.14).

Equation (A.16) is the equation of standard tomography in the
frequency domain. This result agrees with that inv[48], with the

appropriate changes of notation, of course.

A.3 Change of the Plane of Cut by Filtering the Tomogram

In our model of standard tomography the depth of the plane of cut

is zi=A2 (cf. Figure A.1). As zi+A2, zi-d Ay zird Ay
I — X, —Y
Zi-Az d Zi-Az d

in (A.14) approaches an impulse whose Fourier transform is a constant.

¥ The linearity property of the Fourier transform (cf. Table B.1) is

used to find the Fourier transform of (A.7).
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Thus, the transfer function of the plane of cut is a constant and its
impulse response is an impulse, as expected by intuition (cf. Figure A.1).
Equation (A.16) suggests that we can change the plane of cut by

filtering the fomogram. Indeed, suppose we are interested in the plane
_ e qe . A
at a depth 2,52, - Dividing both sides of (A.16) by H(fx,fy)—Ht(fx,fy,zt)

we obtain:

G(f ,f)
Xy _

8(£,.£,) d H (€05, ,2;)
1 XY F(EoE02) dzg (A7)
0

!
H(fx,fy) H(fx,fy) H(fx,fy)

After filtering the tomogram with H-l(fx,fy), the overall transfer
function for the layer at a depth z, is a constant; thus this layer has
become the new plane of cut. The overall transfer function of the
previous plane in focus (zi=A2) is now H_l(fx,fy), namely the filter
transfer function. The overall transfer function for any other layer is

-1
Hy(£,,5),25) H O (£,6).

A.4 A Mathematical Model of Conventional Radiology

Consider'éradiologic system with focal-spot intensity distribution
Io(xo,yo) and film to focal-spot distance d. The diagram in Figure A.l
still applies if we let A,=0 and the movement of the punctual source of
X-rays in standard tomography is replaced by the intensity distribution
of the finite-size focal spot. Under these conditions all the equations
derived previously are still valid with 4,=0.

The intensity on the film is given by (A.7):

d
I(xf’}’f) = IB - fo Ilcxf’yf’zl) dzl (A'7)




with IB as previously defined and Ii(xf,yf,zi) as given in (A.20)

(cf. (A.11) ).

: 0 zi-d zi—d
i i

d-zi d—zi
X U (xf-E), —_— (yf-n),zi} dg dn  (A.20)

d d

By letting u(x,y)=8(x,y), an impulse, we obtain the impulse response
of the ith layer, which of course, agrees with that derived in Chapter II.

In the frequency domain (A.12) and (A.16) are equally valid, but in
conventional radiology the transfer function Hi(fx,fy,zi) of each layer is

(cf. (A.14) and let A;=0):

z.-d z.-d -j2mn(f_x+£f_ y)
_ 2 i i x" Ty
Hi(fx,fy,zi) = Ki Ji’.lo( X, y) e dx dy (A.21)

where

Therefore, the mathematical models of standard tomography and
conventional radiology are similar but with different transfer functions.
In radiology none of the transfer functions is identically equal to a

constant except in the limiting case that Zi=0 (film plane).

A.5 Tomographic Filtering of Radiographs

As we did in (A.17) we can filter a radiograph so that the transfer
function of one of the layers is equal to a constant, thus converting a

radiograph into a tomogram. Indeed, consider (A.22).
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G(f ,f) S(f_,f) d H.(f,f ,z.)
X Y -1 S A L X Y L R (f,f ,z.) dz. (A.22)
0 X 1 1

! U y
H(fx,fy) H(fx,fy) H(fx,fy)

where H.(f ,f ,z.) is defined in (A.21) and
ivTx?Ty’"1

H(fx,fy) = Hi(fx,fy,zi) e = Ht(fx,fy,zt) =
z,-d |? d z _-d j2m (£ _x+f_y)
. - Z - - -] X
t
= ) “/:/PIO [ t g, = y] e YT ax dy (A.23)
Zt zt zt

Consequently, we have shown that by comparing the movement of a
punctual X-ray source with a finite size focal spot and replacing the
movement of the film in standard tomography by the filtration of a
conventional radiograph, we can establish a conceptual analogy between

standard tomography and tomographic filtering.

A.6 Computer Simulation of the Radiologic Process

In this section we describe the procedure used to obtain the
computer simulated X-ray images for some of the experiments in Chapter V.
For this purpose we coded the routine XRAY in FORTRAN IV. A brief
description of the assumptions made and the work performed by this
routine follows.

In order to simulate an actual system as closely as possible,
the linear model was not used in this approximation, but rather the
exponentials were calculated. Thus, the routine XRAY implements a
discretization of (2.4). The film plane and the focal spot plane are
divided into rectangular cells and the object is devided into thin

layers parallel to the film, which are also divided into cells.
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The film and focal spot cells have an X-ray intensity with them that is
stored in computer memory in the form of two-dimensional arrays. The
intensity within each cell is assumed to be uniform. The cells in the
object have attenuation factors associated with them which are stored
in computer memory in the form of a three-dimensional array. All these
arrays are assumed to be centred with respect to the centre ray.

Thus, there is an elementary beam of X-rays from each cell in the
focal spot to each cell in the film plane. For each film cell the
contributions from all the cells in the focal spot are added up taking
into account the attenuation experienced by each beam within the object.
Each beam has the shape of a truncated pyramid, and its attenuation is

calculated as follows:

N
.ZZ [Eiai * ao]
i=1

K
I=1, klzll - (A.24)
k

where:

I attenuated intensity that reaches a cell in the film.

Io intensity of the X-rays emitted from a cell in the focal spot.
K number of layers in the object.

Nk number of cells in the kth layer that intercept the X-ray beam.
Ei attenuation factor of each cell intercepted by the X-ray beam.
a; area of the portion of each cell intercepted by the X-ray beam.
a  ~ area of the cross-section of the beam which does not intercept

the kth layer.
Ak area of the cross-section of the beam with the plane of the

kth layer.
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It should be noted that Z: a; = Ak and in the simplest cases
i=0

we may have ai=Ak if the beam crosses the kth layer within one cell
only.

The calculation of (A.24) is repeated for all cells in the focal
spot and in the film. This is similar to convolution but not quite,
due to the presence of more than one layer interacting multiplicatively.
That is why we have not used fast convolution techniques in this
simulation.

Since the object is defined by layers of attenuation factors
rather than attenuation coefficients, some correction may be necessary
to take into account the different apparent thicknesses of the cells
in a layer depending on the position in the field. This would not
be necessary if the layers were spherical with centres in the focal spot.

Space-variant radiologic systems can also be simulated with XRAY
because the angle of the focal spot is taken into account.

The source listing of XRAY is given in Appendix C.

A.7 Example of Focal-spot Parameter Estimation in Radiographs

The techniques of power spectrum and power cepstrum estimation
might be used to obtain from a radiograph some of the characteristics

of the focal spot.




We have shown that typical focal spots have a twin-peaked intensity
distribution (see Figures 3.10 to 3.14). The parameter that we want to
estimate in this example is the distance between peaks and their orien-
tation. This information is useful in determining the phase character-
istics of the transfer function. The given data is a radiograph of an
object obtained with a twin-peaked focal spot. For simplicity we assume
that the system is space-invariant (i.e., the focal spot is parallel to
the film) and the object is planar with similar statistics anywhere in
the field.

The first step is to estimate the power spectrum of the radiograph.
Since the power spectrum is the result of an averaging process, it
retains little of the flavor of the original image, while the characte-
ristics of the blur due to the focal spot intensity distribution are
strongly manifested.

Considef how the distance 2d between peaks of the PSF will show up
in the power spectrum. The twin peaks of the PSF may be described by a
Gaussian-shaped single peak at the origin convolved with a pair of
impulses at the distance 2d. In the frequency domain this corresponds

to the product of the transform of a single peak with a cosine function

of frequency d. Therefore the power spectrum has periodic zeros in a
certain direction at intervals 1/d.

A direct search for zero crossings usually fails because they are
obscured in practice by the randomness of the object and noise. A better
approach is to compute the power cepstrum, which is the Fourier transform
of the logarithm of the power spectrum. It has been shown [56] that

periodic zeros in the power spectrum at intervals 1/d result in large
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negative spikes in the power spectrum at a distance d from the origin.
The orientation of the spikes determines also the orientations of
the peaks of the PSF. This technique has been used successfully [55]

in the case of motion blur and out of focus blur in photographic

images,
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Appendix B

THE TWO-DIMENSIONAL FOURIER TRANSFORM

B.1 Introduction

In this appendix we study some aspects of the two-dimensional

Fourier transform that are not reédily available in the literature.
The definitions and properties which are straightforward extensions
from one dimension are only summarized for reference. We emphasize

those properties which do not have counterparts in one dimension.

In Section B.2 the two-dimensional Fourier transform is defined and
some manipulations, such as changing the reference coordinate system and
transforming circularly-symmetric functions are considered. In Section
B.3 some properties inherent in the two-dimensional Fourier transform
are presented, including the projection-slice theorem for the case of
parallel projection rays. In Section we study the possibility of
extending the projection-slice theorem to the case of divergent
projection rays. Finally, in Section B.4 the two-dimensional discrete
Fourier transform and its fast implementation by a digital computer are

considered.

B.2 Definitions

The two-dimensional Fourier transform of a complex function of two

independent real variables, x and y, is defined [7] as
G(f,£) = F {gx,y)} =ffg(x,y) exp{—jZTr(fxx+fyy)} dx dy (B.1)

The two-dimensional inverse Fourier transform of a function G(fx,fv)

is defined in (B.2).
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_ -1 _ .
g(x,y) = & {G(fx,fy)} —ffG(fx,fy) exp{JZw(fo+yfy)} df dfy (B.2)

In (B.1) and (B.2) we have used a rectangular coordinate system as
reference. The coordinate system may be changed, in which case the
Jacobian of the transformation appears in the integrands of (B.1) or
(B.2) in order to maintain the differential area constant. In the case
of circularly symmetric functions sometimes it is very convenient to use
a polar coordinate system. The equations which define the transformation
and inverse transformation from rectangular to polar coordinates in both

the xy and fxfy planes are the following:

r = Xc+y X = r cosf
8 = arc tan—;—’- y = T sin6
(B.3)
o =4/ f2 + £2 fx=pcosq5
f
¢ = arc tan —L- f = p sing
£ Yy

Applying the coordinate transformations (B.3) to (B.1), the Fourier

transform of A (r,9) é g(r cosf , r sind) can be written as

=]

27
Alp,d) = [ [ r A(1r,8) exp[-j2mrp cos(6-¢)] dr | d® (B.4)
' 0 0

If A(r,0) is circularly symmetric, i.e. Xo(r) ék(r,e), the. Fourier

transform of xo(r) is

© 27
Alp,d) = [ T Xo(r) ] exp[-j2rrp cos(6-4)] de dr (B.5)
0 0

217




which can be written as a function of the zeroth-order Bessel function
of the first kind Jo(-), as in (B.6).

co

A () éﬁ‘{xo(r)} = 2wf t A (r) J_(2mrp) dr (B.6)
0

Thus the Fourier transform of a circularly symmetric function is
itself circularly symmetric and can be found by performing the one-
dimensional manipulation in (B.6). This expression is referred to as
the Fourier-Bessel transform, or alternatively, as the Hankel transform
of order zero. By means of arguments identical with those used

previously, similar results can be derived for the inverse transform.

B.3 ProEerties

Since all the properties of the one-dimensional Fourier transform
can be extended directly to two dimensions, they are only summarized in
Table B.1 and we will not discuss them here. Rather, we consider those
properties in two dimensions which do not have counterparts in one

dimension.

1) Separable functions: A function separable in rectangular
coordinates, g(x,y) = gl(x) gz(y) has the particularly simple property
that its two-dimensional Fourier transform can be found as a product of

one-dimensional Fourier transforms [7]:

6Eof) = [ [ 2oy eml-i2n(e e 0] ax ay

[0 expl-sane,x ax [0 ey 3.7)
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Table B.1. Properties of the Two-Dimensional Fourier Transform

LINEARITY F {ag(x,y)+bh(x,y)} = aG(f £ J+bH(E,, £ )
CONVOLUTION F {g(x,y) *h(x,y)} = G(fx,fy) H('fx’fy)
SCALING F {glax,by) } = (1/]ab]) G(f,/a,f /b)
SHIFTING F {g(x-a,y-b)} = G(f,,£) exp[-j2(af ,bf )]
AUTOCORRELATION F 1rrg(g,n)g*(&-x,n-y)d&dn} = lG(fx,fy)l2

PARCEVAL'S THEOREM  F {//g(x,y)h* (x,y)dxdy} = [SG(£ £ JH* (£ ,f Idf df

HERMITIAN G(fx,fy) = G*(-fx"fy) if g(x,y) is a real function

INVERSION F1TF Y1) = ﬁ"l{ﬁ'{g(x,y)}} = g(x,y)

2) Spatial frequencies: The two-dimensional Fourier transform may
be regarded as a decomposition of a function g(x,y) into a linear
combination of elementary functions of the form exp{jZﬂ(fXx+fyy)}.

Such functions have a number of interesting properties [7]. Note that
for any particular frequency pair (fx,fy) the corresponding elementary
function has zero phase along lines described by

f n
(n an integer) (B.8)

The Fourier transform in two dimensions can be interpreted as the
spatial frequeﬂcy components of the signal. Thus, the frequency compo-
nents of the signal in a certain direction constitute a ''slice" of the
two-dimensional Fourier transform. This is proved by the projection-

slice theorem.
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Figure B.1. The projection-slice theorem.

3) Projection-slice theorem: The one-dimensional Fourier transform
of a projection is a '"slice" of the two-dimensional Fourier transform.
This is illustrated in Figure B.1 and the proof may be found in [2].

The projection-slice theorem is the basis for many algorithms for
computerized tomography.

This theorem can also be used as an alternative to the Henkel
transform for computing the Fourier transform of circularly-symmetric
functions without the need for Bessel functions. Indeed, the frequency-
domain slice Ao(p) in (B.6) can be calculated by doing a projection of
the circularly-symmetric function followed by a one-dimensional Fourier

transform.
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B.4 Radial Projection-Slice Theorem

The projection-slice theorem introduced previously assumes that the
projection‘rays are parallel. This is not always the case; in radiology
for example, there is a point-like source of diverging X-rays and the
projection-slice theorem is no longer valid. To our knowledge, an
equivalent theorem considering diverging projection rays has not been
proposed yet. With diverging rays the theorem may still be true but
with a more complicated type of slice.

We have studied this hypothesis in depth from different points of

view but we were not able to prove it.

B.5 The DFT and FFT in Two Dimensions

A discretization of (B.1) and (B.2) results in the two-dimensional
discrete Fourier transform (DFT) and thé two-dimensional inverse
discrete Fourier transform (IDFT), respectively, as shown in (B.9) and
(B.10), where the subscripts p indicate that the signals are

periodic [13].

Nj-1 Nj-1
Xp(kl,kz) = n}:o gz:O X (nl,nz) exp [-j—=— N nlkl] exp[- J———n 2] (B.9)
= e
. Nj-1 Nj- o
x,(n,m,) = T kZO k}jo X, (kpok)) explj—=2 N, n k] exp[agn2 ,1 (B.10)
172 "1 2

The properties of the two-dimensional DFT are similar to those of
the two-dimensional Fourier transform, given in Table B.1.

Equations (B.9) and (B.10) can be evaluated as a series of one-

XS]
N
|




dimensional DFT's and therefore the fast Fourier transform (FFT) may be

used. This is clear if we rewrite (B.9) as

N,-1 N,-1
L 2 2 2m
Xp(kl,kz) = Z; exp [-j5—1n k] Z; xp(nl,nz) exp [-j5—n k] (B.11)
nl—O 1 n2—0 2

Since xp(nl,nz) is usually given in the form of a matrix, (B.1l1)
can be evaluated by performing Ni FFT's on the columns of xp(nl,nz) thus
obtaining another matrix that we call yp(nl,kz). We then perform N2
FFT's on the rows of yp(nl,kz). Since computers store data sequentially,
to operate on the rows of a matrix we must either transpose it and
operate on the columns, or use a FFT program capable of processing every
N,-th element of the sequentially stored matrix (e.g. subroutine FFT2

2
in Appendix C).
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Appendix C

SOURCE PROGRAM LISTINGS

This appendix contains the source listings of the principal computer
programs developed during the course of this work. These programs were
selected because of their generality, shortness, and possible ﬁsefulness
to other researchers. Consequently, no main programs or subprograms
that were too specific or too long are included here.

The programs are written in FORTRAN IV and run on an IBM 370/165-11
computer using both the WATFIV and IBM FORTRAN (Gl and H Extended)
compilers. In order to save compilation time and number of cards read,

a load-module library (USER.COMMLIB) was created on-line. The subprograms
used more frequently were optimized, compiled, and stored in USER.COMMLIB.

The programs are organized here into functional groups and presented
in the following order:

1) Fast Fourier Transform Programs

VFFT - Calculates the DFT or IDFT of a set of complex numbers.

RLTR - Completes the transform when VFFT is used with real data.

FFT2 - Calculates the two-dimensional DFT or IDFT of a complex matrix
(calls VFFT).

FFT2R - Calculates the two-dimensional DFT of a real matrix or the IDFT
of a hermitian matrix (calls VFFT and RLTR).

FFT2D - Calculates the DFT or IDFT of a complex matrix stored in

auxiliary storage (calls VFFT).

2) Two-Dimensional FIR Filter Design Programs

HKWBPF - Calculates the impulse response of a two-dimensional Kaiser-
window band-pass or low-pass filter (calls BFJ1, BFIO, and HMI).
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BFJ1

BFIO

HMI

Generates the first-order Bessel function of the first kind.

Generates the modified zeroth-order Bessel function of the
first kind.

Copies one half of a matrix into the other half.

3) Two-Dimensional IIR Filter Design and Realization Programs

CDFILT

DFILT

FRESIN

PTPHCC

GFRES

FILTER

CCP2

Determines the coefficients of a circularly-symmetric low-pass,
high-pass, or band-pass two-dimensional IIR filter (calls DFILT
and PTPHCC).

Determines the coefficients of a two-dimensional low-pass IIR
filter (calls RTMI and FRESIN).

Calculates the magnitude response of a two-dimensional IIR
filter at any spatial frequency.

Normalizes, prints and punches the coefficients of a two-
dimensional IIR filter.

Evaluates the magnitude response of a two-dimensional IIR
filter in any rectangular region of spatial frequencies (calls
FRESIN) .

Implements a two-dimensional high-pass or band-pass ITR filter
(calls CCP2 and ASCALE).

Implements a two-dimensional low-pass IIR filter using the
technique of complex cascade programming (calls TRANSF).

4) Programs Related to Radiologic Systems

XRAY

Simulates a radiologic process of given characteristics.

INVFHL - Calculates the magnitude response of an inverse filter with a

given hard-limit.

The programs developed and used in this dissertation for the design
and realization of tomographic filters, power-spectrum estimation,
histogram equalization, etc. are not included here because they are too
long and specific. They are also computer-instalation dependant because
they use disk and tape files and the plotting system.

5) Utility Programs

PICPRT - Produces a pictorial output using the line printer.

ASCALE - Scales the elements of an arfay.
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DBS - Transforms an array of numbers to decibels.

CMAG2 - Calculates the squared magnitude of the two-dimensional DFT
given by FFTZR.

COMPLT - Completes the array given by CMAGZ using symmetriés.

CAMOVE - Produces a two-dimensional circular shift of the elements of

a matrix.

CTDW2 - Multiplies a matrix by a two-dimensional cosine taper data
window.

TRANSF - Implements all linear transformations which map a square matrix

onto itself.

Other powerful utility subroutines were used and are not included
here because of space limitations. These are:

RTMI

Finds the roots of a given function using Mueller's
iteration scheme (IBM System/360, Scientific Subroutine
Package, Version III, Programmer's Manual, IBM publi-
cation GH20-0205-4, 1970, pp. 217-219).

CONTUR

Plots a set of contour lines by interpolating in a
matrix [68].

PERSP

Plots a perspective view of a surface defined by a
matrix with hidden line elimination (available from
the author).

NGRAPH - Plots multiple graphs of one-dimensional arrays

(available from the author).

Generates several types of window functions (available
from the author).

WINDOW

CALCSIM - Package of subroutines which require little memory
space and simulate the Gould or Calcomp plotting
system using a line printer (available from the author).

The source listings of the previously mentioned programs start in

the following page.
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1) Fast Fourier Transform Programs

SUBROUTINE VFFT -(Xs Y» NT,. IFN)

JeM, COSTA 1978 0512 1210 VER 01.01
THIS SUSROUTINE CALCULATES THE DISCRETE FOURIZR TRANSFORM DR THE
INVERSE DISCRETE FOURIZR TRANSFCRM OF A SET 0F COMPLEX NUMBERS USING
THE FAST FDURIER TRANSFORM ALGOFITHM OEVELOPED EY G. SANDE (MIXED
RADIX & AND RADIX 2. € WaMae GENTLEMAN AND G. SANDZ, FAST FOURIER
TRANSFIRMS = FOR FUN AND PROFIT, 1266 FALL JOINT CCMPUTER
CONFERSENCE)s THE CALCULATION IS CONE IN PLACE, TH#eT IS THE JUTAUT
DATA SEPLACSS THZ INOUT DATA. THE M~-TH COMPLIX CUTPUT DATA POINT
GF THE N POINT DISCRETE FOURIER TRANSFORM IS

N ~-{K-1)
CO(M) = SUM CII{K) * W , WHERE W = EXP{J%2%PI®({M=1)/N)>,
K=1

J IS THE IMAGINARY OPERATORs AND CI(K) IS THZ K=-TH COMPLEX INPUT
DATA PJINT. SIMILARLY, THE K=TH COMPLEX OUTPUT CATA PCINT CF THE N
POINT INVERSE DISCRETE FOURIER TRANSFORM IS

N (K=-1)
CO{K) = (1/N) SUM CI(M) * W °
CM=1

THIS IMPLEMENTATION OF THE FAST FOURIER TRANS®CRM RECURSIVEL
CALCULATES THE EXPONENTIAL FUNCTION IN ORDER TO GET GREATER
SPEED AT THE EXPENSE 0F SOME LQOSS OF PRECISION.

THE SUBROUTINE PARAMETERS ARE AS FOLLOWS.

X -~ ARRAY OF LENGTH N CONTAINING THE REAL PART OF THE DATA,

Y ~ ARRAY OF LENGTH N CONTAINING THE IMAGINARY PART OF THE DATA.

NT - NUMBER DF ELEMEMTS IN EACH OF THE ARRAYS X AND Y.
NT/IABS(IEN) MUST BE A POWER OF TwWO NOT GREATER THAN 8192.

IFN - INPUT PARAMITER, TQUAL TO +INC FOR THE TRANSFDORM.

EQUAL TO =INC FOR THE INVERSE THAMSFOIM.
INC REPRESENTS THE INCREMENT 3ETWEEN DATA ELEMENTS
(NORMAL LY 1) . IT ALl NWS THE 1ISF NF MUL T =DITMEMSTINONMAL
OR SPECIAL (S.G. COMPLEX) AFFAYS. IF INZ IS SQUAL TD 1,
EVERY ZLEMINT 0OF THE ARFAYS X AND v IS USED. WHEN INC IS
GREATER THAN 1, ONLY EVERY INC-TH ELZIMENT OF EACH ARRAY
IS USED., THE NUMRER OF COMPLEX POINTS USEC IN THZ
TRANSFORM IS NT/IMNCa THIS NUMBER MUST BEZ A POWER OF T§O
NOT GREATER THAMN 8192

NOOODNNANOANONDANANNABNNONANANNNNONNNNNONNOD

DIMIMSION X(NT)sY(NT),,KE(13),KI(13):CA{6)+,3A(B)
EQUIVALENCE (KE( 1)+KED1}s (KE( 2),KE02)s (KE( 3),KEO03),
* (KE( 8),KED4)s (KE{ S)KE0S5)s (KE{ 6).KE06),
* (KE( 7)sKEQ7)s (KE( B8),KEC8)s (KE( 9),KE09),
* (KE(10)sKE10)y, (KE(11}),KEL11)y (KE(12).KEL12),
* (KE(13),KE13)
EQUIVALENCE (KI( 1),K101)s (KI({ 2),K102)s (KI({ 3),KI03),
* (KI{ 5)s%K104)y (KIC 5),<I105)s (KI( 6)>KIO0E),
* (KI{ 7),X107), (KI( 8),KICB)s (KI{ 9)sKIDD)»
* {(KI(10)»KI10)s (KI(11),KI1l1)y (KI(12),KI12),
* {(KI{13),KI113}
DATA NP/=999/,INCP/=-3%9/,10UT/6/,LG2MNMX/13/,P12/6.283185
C
C CHECK TGO SEE IF THE INITIALIZATION HAS BIEN DONE
INC=IABS(IFN)
IF {NT.SO.NP JANDs INC.EQ.IMNCP) GO TO 250
C
C FIND THE LOGARITHM (BASE 2) OF THE NUMRBER OF PGINTS
INCP=INC
INCT2=INC+INC
NP=INCT2

DO 100 LOG2N=1,LG2NMX
1T (NP.EQ.NT) GO TO 120
NP=NP+NP
100 CONTINUE

NP==939
TF (NTNTL,INC) ¥RITZ(10UT»1000) NT,INC
1000 FORMAT(18HO¥%*xZRRGR IN VFFT,»18:29H DATA PJIINTS AT INCRE MINTS OF,
- 16,25H IS MOT A POWER OF TwWg x*%x)
RETURN

C
C SET UP THE UNSCRAMBLING LADP PARAMETERS (NOJOTEZ THAT THE VARIA3LES
Cc KE~J AND KI-J ARE EQUIVALEMNCED TO KE(J) AND KI(J) FISPECTIVELY)
120 KEOI=NT
KIO1=NT/2

)
KE(J} /24 INC)



[aXals)

ann 0

anh o

o0

[a13]

an

000N

200 CONTINUE

SET WP THZ INITIAL VALUES FOR THE RECURSIVE CALCULATION OF
THE TWIDDLE FACTORS
AN=1.0/FLOATI(NT/INC)
IF (LLOG2N.EG.1) GO TO 250
FM4=PI2%AN
LOGAN=LOG2N/2
DO 230 K=1,L0G4N
CA{K)=CDS (FM4)
SA(K)=SINI{FM4)
FM4=4 ,0*F M4
230 CONTINUE

250 IF (IFN.GE.OQ) GO TO 320

FOR THZ INVERSE TRANSFORM ONLY,

FORM THSE COMPLEX CONJUGATE OF THE INPUT DATA
DO 300 I=14sNT,INC

300 Y(I)==-Y(I)

320.1F (LOG2N.EQG.1) GO TO 650

CALCULATE THE RADIX & FAST FOURIER TRANSFORM
M4a=NT
DO 600 K=1,LO0G4N
M=M4 /74
CC=CA(K)
SS=SA(K)
Ci=1.0
S1=0.0

DO 500 J=1,M,INC
IF(J.EQal) GO TO 340

CALCULATE THE TWIDDLE FACTORS
C2=C1*C1-S1%51
S52=C1*S1+C1*51
C3=C2*C1~52*51
S$3=C2*%S1+52%(C}

340 JMUME=J~-Ma

DO 400 I=M8.NT,MA&
JO=I+JIMMa

J1=J0+M
J2=J1 +M
J3=J2+M
ARO=X{JO)+X(J2)
AR1=X{J0)-X(J2)
Alo=Y{Jo)+Y(J2)
All=Y(JO)~Y(J2)
ARZ2=X(J1)+X(J3)
ARI=X{J1)=X{J3)
AIZ2=Y(J1)+Y(J3)
AI2=Y(J1)-Y(J3)
X(JOY=ARO+AR2
Y{JO)=Alo+Aal2
IF (J«ZQ.1) GO TO 360
MULTIPLY BY THE -TWIDDLZ FACTORS
X{J2)=Cl*(AR1+AI3)+S1=(AI1-AR3)
Y{J2)=C1*{AT 1-AR3)-S1I{AR]1+AI3)
X(J1)=C2*x{AP0-ARZ2)+S2x{ AIQ-AI2)
g ¥ {(J1)=C2*{(A10~-AT2)-S2%( ARQ-AR2)
X{J3)=C3*(AR1~-ATI3)+S3*x(AT1+4AR3)
Y(J3)=C3%x(AI1+AR3)~-S3*( AR1-AI3)
GO TO 400
TRIDDLE FACTORS ARE ONE AND ZERQD
360 X{J2)=ARI1+AI3
Y{J2)=AI1-AR3
X(J1)=AR0~AR2
Y(J1)=Al0=-AI 2
X(J43)=AR1-Al3
Y{J3)=AI1+AR3
400 CONTINUE

CALCULATE THE NEXT SET OF TWIDDLE FACTCORS RECURSIVELY
TMP=C1#CC~S5S1%53
S1=C1%¥335+51%CC
Cl=TMP
5GC0 CONTINUE
Ma=M
600 CONTINUE

PICK UP AMY EXTRA FACTARS OF TWO YO COMPLETE THE TFANSFORM
IF (LOG2N,.EG.2*L0G4N]} GO TO 750
5650 DO 700 I=1-NT,INCT2
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800
800
800
800
300
800
3090
800
800
300
500
8090
BQO
17 (JJSLE.KO1)
TEMP=X(J4J)
X{(JJI=X(KQ1)
X(KQ1)=TEMP
TEMP=Y(JJ)
Y(JJ)=Y(KOL)
Y{KO1)=TEMP
800 JI=JJ+INC

K13= 1 L,KZ13,KI13
K12=K13,KE12.KI12
K11=K12,KE11,KI11
K10=K11,KETQ,KI10
KCO9=K10,KE39,KI09
KOB=K(09,KZ08,K108
KO7=KOBsKEDT7,KIO7
KOBE=KO73KEQBsKIOB
KQ3=K05,KE05,K105
KOa=KO5,KEO4,y K104
KO3=K04,KZ03,K103
Ke2=K03,KEQ2,KI102
KO1l=K02,KZ01,KI01
GO TO 800

FOR THZ INVERSE TRANSFORM ONLY
FORM THE COMPLEX CONJUGATE OF
IF (IFN.GE.O0) RETURN
DO 900 I=1,NTsINC
X{I)=AN%X (1)
Y(I)==ANXY(]1)
S00 CONTINUE
RETURN

END

SUBROUTINE RLTR (XsYNT,IFN

POSITIVE IFN CASE?:

IF IFN IS GRZATER THAN ZEROs
FCURIER TRANSFCORM OF N+N RIZaAL
VALUES ARE STORED ALTERNATELY
XE1) e (1) s XTINCHI)w Y (INC+1)s &
AND ARE FIRST TRANSFORVWED BY A
AFTER CALLING RLTR THE REAL PA
FCURIER TRANSFOR#M IS STORED IN
THE IMAGINARY PART IN Y(11},Y(I

T

CFf THE COEFFICIENTS CAN BE OBTAINED

A TYPICAL CALLING SEQUENCE 1S3

NEGATIVE IFN CASE:

IF IFN IS LESS THAN ZERD,
ATEP IN EVALUATING A REAL FOUR
ALTERNATE IN ARRAYS X AND Y, T
YOINCEIN=1)+1),Y(INCX(N=1)+1),

THE

A TYPICAL CALL ING SEQUINCE 1IS:

THE SUBROUTINE PARAMETERS ARE

X - ARRAY OF LENGTH N CONTATI
ARRAY OF REZAL DATA QR TH

Y - ARRAY QOF LENMGTH N CDMTAI
ARRAY OF REAL DATA CR TH
DATA.

NT - NUMBEF OF DATA POINTS IN

EoalL T
EQUAL T
INC REPREISENTS THE
{NORMALLLY 1) IT
OR SPZClAL (E.G. TOM
EVERY ELEMENT OF THZ
GREATER THAN 1, ONLY
IS USED. THE NUMBER

IFN = INPUT PARAMETER,

THE SCALED OUTPJUT ARRAY

)

JeM, COSTA 1976 0312 1360 V=R 01.01
HIS SUBROUTINE COMPLETES THE DISCRETE
DATA VALUES, WHIRE THE ORIGINAL DATA

IN THE ARRAYS X AND Y, THAT IS

ee 3X({INCH(N=1)+1),YUINC* {(N=1)%1),
COMPLEX FCURIER TFANSFORM OF LIZINGTH N

RT OF THE COSFFICIENTS OF THE DISCRETE
X(1)sX{INC+12y aoe »X(INCXN+1), AND
NC+1)s ses »Y(INTENF1) & THE OTHER HALF

BY CUOMPLEX CONJUGATIDN,

CALL VFFT (X Y sNXINCs+INC)
CALL RLTR (XsY» (N+1)*INC,+INC)

INVERSE TRANSFCOIM IS DONE, THE FIRST
1EP SERIEZS. THZ TIME DOMAIN RESULTS
HAT IS X(1)s Y (1) o XCINC+I)»Y(INC*1)s see

CALL RLTR (XyYs (N+1)XINC,~INC)
CALL VFFT (XsYsN*=INCy,=INC)

AS FOLLOWS.

NING THE 00D NUMBERE
£ REAL PART COF &N ARFAY CF CDMPLEX DATA
NING THE SVEM NUMEZIRED ELEMENTS OF AN
IMAGINARY PART OF AN ARRAY OF COMPLEX

O ELEMENTS OF AN

EACH OF THZ ARRAYS X AND Y PLUS INCe

O +INC FOR THE TRANSFQOR,
8]

~INC FUOR THE INVERSE TRANSFO3IM.
SETWEEN DATA ELEMENTS

USE OF MULTI-DIMENSIONAL

L ARRAYS. I/ INC I5 ZOUAL TO 1
ARRAYS X AND Y IS USEOD. WHEN INC IS
EVERY IMC~TH ELEMENT OF ZACH ARIAY
OF COMPLEX POINTS USED IN THE
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C
C
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0N

TRANSFUORM IS (NT-INC)/INC.
TWO,

DIMENSION X{NT)sY(NT)

INITIALIZATION
INC=IABS(IFN}
NK=NT=INC
N=KNK/ZINC .
NK=NK+2

265358979 /FLOATIN}

S=0.0
IF{IFN.LT.0) GO TO 20
C==C

SS==SS
X (NK=1
Y(NK=1

il

<XX =T <X
~—

1
1

CUﬁPLETE RANSFORM OR INVERSE TRANSFORM

» INC

Gl wrw
I

>
")
i
»
-
[ 5%
——w
1

T
NH
(K)

(K)
(K)

BB=Y(J)-Y(K)

XX=C*BA+S%A8

YY=Sk*BA=-C*AB

Y(K)=0.5%(YY-~-BB)

¥(J)=0.5*x(YY+3B)

X(K)=0s.5* (AA-XX)

X{J)I=0«eS*{AA+XX)

AA=CC*C=S55%S

S=SS*C+CC*S

C=AA

CONTINUE

RETURN

30

END

SUBROUTINE FFT2 (X» Ys M, Ny MX, IFN)
JeMs COSTA

THIS SUBROUTINE CALCULATES THE TWO-DIMENSICNAL DISCRETE

THIS NUMBER MUST BE A PO¥ER OF

1275 1128 0125

FOJURIER

TRANSFORM OR THE INVERSE TWO-DIMENSIONAL DISCRETE FCURIER TRANSFORM

OF A MATRIX OF CONMPLEX NUMBDERS.
DSCOMPOSED INTGC A SERIZS OF ONE-DIMENSIOMAL TRANSFORMS,
BY COLUMNS, FOR %HICH THE SUBRCUTINE VFFT [S CALLEC.

THE TWO-DIMENSIDNAL TRANSFORM 1S

8Y ROWS AND

DATA REPLACES

WITH JPPER

TRANSFORMe.

IS EQUAL TO 1,

THE TRANSFORMATION IS DONE IN PLACE, THAT 1S THE OUTPUT
THE INPUT DATA.
THE SUBROUTINE PARAMETERS ARE AS FOLLOWS.
X - MATRIX CONTAINING THE REAL PART QF THE CDATA.
Y - MATRIX CONTAINING THE IMAGINARY PART 0OF THE OATA.
M - IPST DIMENSION OF X AND Y.
N - SECOND DIMENSION OF X AND Y.
MX - INPUT PARAMETER THAT ALLOWS PROCESSING SUEBMATRICES 0OF
X AND Y. NGRMALLY SET MxX=M TO PROCESS ENTIRE MATRICES.
TO PROCESS THE #xX BY NX SUBMATRICES IF X AND Y
LEFT HAND CGRNER (1,J) USE THE FOLLOWING CALL
CALL FFT2 (X{T,J)aY(IsJ)yMyNXaMXs[FN)
IFN ~ INPUT PARAMETZR,s EQUAL TO +INC FOF THE TRANSFORM,
ZQUAL TO —~INC FOR THE INVERSE
INC REPRESENTS THE INCREMENT BITWEEN DATA ELRMEMTS
{NORMALLY 1) . IT ALLO®WS THE USE GF MULTI-DIMEMSIONAL
OR SPECTAL (C.Ge COMPLEX) ARRAYS, I INC
EVERY ELEMENT QF THE ARRAYS X AND Y IS5 USEDSs W HEM

GREATER ONLY EVEPY INC~-TH ELZIMENT OF
15 USED.,
TRANSFORM 15
SECOND CIMENSION.

THAN 1

MX/ INC IN THE FIRST DIMINSIUON AND

DIMENSICN X{MyN) Y {MsN)

FFT 3Y ROWS
CO 3 1=1sN
3 CALL VFFTUIX{151)27{1513sMXyIFN)

FFT BY COLUMNS
INC=1ABS{IFN)
MN=MEN
IFNLI=1ISIGN({HM,IFN)

229
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CO 6 I=14MX,INC
6 CALL VFFTIX(Ts1) Y (T +1)sMN: IFNLY)
RETURN

END

SUBROUTINE FFT2R (X»MT+NT41I5N)
J.M, COSTA 1976 0312 1135
THIS SUBROUTINE CALCULATES THE TwO-DIMENSIGNAL DISCRETE FOURIEZER
TRANSFORM OF A MATRIX OF REAL NUMBERS OR THE INVERSE TWO-DIMENSIONAL
DISCREITE FOURIER TRANSFCRM OF A HERMITI AN MATRIX.
SINCE THE TRANSFORM AF A REAL MATEIX IS A HEIMITIAN WATRIX THIS
SUBRGUT INE GIVES ONSE HALF OF THE TRANSFOSMED MATRIX ONLY. THE OTHER
HALF CAN BS COBTAINZD BY COMPLEAX TONJUGATION, THE TRANSFORMATICN IS
DONE IN PLACE., SPACT F0OR AN ADDITIONAL COMPLEX FOW CR COLUMN MUST
BE PROQVIDED, SIMILARLY, FOR THE INVERSE TRANSFCFEM SUPPLY ONE HALF
OF A HERMITIAN MATRIX ONLY AND THE RSSULT WILL BE A REAL MATRIX.
SUBROUT INES NEEDEDI VFFET AND RLTR.
THE SURROUTINE PARAMETIRS ARE AS FOLLOWS,
X - TWO-DIMENSIONAL ARRAY OF DIMENSIONS MT BY NT.
MT = FIRST DIMENSION OF X
NT = SECOND DIMINSION OQF X
ISN - INPUT PARAMETER, PGSITIVE FOP THE TRANSFURM, NEGATIVE S0OR THE
INVERSE TRANSFORM, IN ADDITICN, ISN CETZRMINES IF AM EXTRA
ROW OF AN EXTRA COLUMN HAS BEEN SUPPLIED FOR THE HERMITIAN
MATRIX. THE DIMENSIONS CF X SHOULD RBE INTERPRETED AS FOLLOWS.
IF TABS{ISM)=1s THEN X(MT,NT) = X(M+2,N)
IF TARS(ISN)=2s THEN X{MTyNT) = X{M,N+2)
WHERZ M AND N MUST BE POWERS OF TWO.

DIMENSION X{MT,NT)
MTXNT=MT=NT
IF{IABS{ISN)«GT.1) GO TO 60

THE DIMENSIONS OF X ANS MIM22, M}
M=MT =2
IF {ISN.LT.0) GO TOQ 30

TRANSFORM
DO 10 I=1,N
CALL VFFET ( ’
(
M

I)eX{2:1)sMs2)
1)

10 CALL RLTR s X{2:1)4MT»2)
DO 20 I=1,

20 CALL VFFT (
RETURN

#1)e XCI4141) s MTXNT R MT)

INVERSE TRANSFORM

30 DO 40 I=1,MT,2

40 CALL VFFT {X{I+1)sX(I%#151)sMTXNT»~MNT)
DO 30 I=1,NT
CALL. RLTR (X(1a1)aX{2s1)+4T+=2)

53 CALL VFFT (X{1,I)sX{2:,1),M4,~2)
RETURN

THE DIMENSIONS OF X ARE X{My,N+2)
60 N=NT~-2

MTXN=MT ¥

MOM=MT+MT

IF(ISM.LT+0) GO TO 90

TRANSFORM
DD 70 I=1,MT
CALL VFFT {X{I4+1)sX(I:2)+MTXN,MPM)
70 CALL RLTR (X{Is1)seX{I:2)sMTXNTIMFM)
00 80 I=1,NT,s2
80 CALL VFFT (X(191)aX(1sT+1)aMTs+1)
RETURN

INVERSE TRANSFORM
S0 DO 100 [=1NT»2
166 CALL VFST (X{I»1)aX{1,5141)2MT,-1)
DO 110 I=1,MT
CALL RLTR {X{I+1)-X(1,2) 3sMTXNT,=MPM}
110 CALL VFFT {X{I431):X{132)¢MTXMy-MFPH1)
- RETURN

EnD

o]
[
o




SUBROUTINE FFT2D {X» YsMyMNIK,IFN, BUFFER, MK) -

JOSEP M, COSTA 1975 0523 1429
THIS SUBROUTINE CALCULATES THE 20 DISCRSTE FOJRIER TRANSFORZM OR THE
INVERSE 2D DISCRETE FOURIER TRANSFORM OF A 2D ARRAY OF COMPLEX
NUMBERS STOREX IN AUXILTIARY STORAGE.
THE 2DARRAY COF DIMENSIONS # 8Y N IS DIVICEG INTC MN/K BLICKS JF M 3Y K
ELEMENTS SO THAT THE STOPAGE REQUIRED IN THE COMPUTER MAIN MEMORY IS
3xMxK WORDS ONLY. THE AVERAGE MNUMBER (OF RTAD AND WRITE OPERATIONS
IS 2«K%x(2%K+3) .
A NUM3ER OF QPTINNS FOR THZ INRUT AND OUTRUT OF THE DATA ARE
AVATLABLE TO SAVE BOTH CRPU AND I/0 TIMZ. THE ARGJMENT IFN CONTROLS
THIS OPTIONS.
THE VALUZS 0% IUX AND IUY ARE INTERCHAMGED IN THE SUBROUTINE WITH THE
VALUES OF JUX AND JUY, RESPECTIVELY., IN THIS WAY, AT ANY TIME TUX
AND IUY POINT TO THE UNITS CONTAINING THE DATA AND JUX AND JUY REFER
TO THE UNITS USED AS WORKING FILES.

THE SUBROUTINE PARAMITIRS ARE AS FOLLOWS.
~ WORK ARRAY 0OF LENGTH MK FUOP THE REAL PART OF THE DATA.

Y - WOWK ARRAY 0OF LENGTH MK FOR THE IMAGINARY PART OF THE DATA.
M - NUMBER OF RCwWS IN THE 20 ARRAY

N ~ NUMBER OF COLUMNS IN THE 2D ARRAY

X ~ NUMBER OF ROWS IN EACH BLOCK

BUFFER =~ WORK ARRAY OF LENGTH MK

MK - M*xK, MUST BE SUPPLIED FCR DIMENSTONING,

IFN - SIGNED TwWO DIGIT INTEGER NUMBER

=0 DC NDOTHING (RETURN)

>0 TRANSFORM

<0 INVERSE TRANSFORM

FIRST DIGIT OF IFN (CCNTROLS THE INPUT)

=1 READ NORMAL INPUT FI0OM UNITS 1UX AND 1IUY

=2 RZAD SCRRAMBLED INPUT FROM UNITS IUX AND TUY

SECONC DIGIT OF IFN (CONTROLS THE CUTPUT)

=1 UNSCRAMALE THE OUTPUT AND STORE RESULTS IN UNITS IUX
AND TUY

=2 GIVE SCRAMBLED OUTPUT IN UNITS IJuX AND IUY

FOR MOST EFFICIENCY, CODE IFN=12 FOR THE TRANSFORM AND IFM=-21 FOR
THE INVERSE TRANSFORM.

OOOOOONDOOOANONNNOOOOOOOONNOOONNNDNONNOND

DIMENSION X(MK), Y
COMMON /TIMING/ IT
CCMMON /FILESY 1UX
DATA PI1/3.141593/
DATA LMAX/20/

on

INITIALIZATION
IF{MK.NEJMEK) GO TO 2
KP=1
DO 1 L=1,LMAX
KP=KPxK
IF(KP.EQ.N) GO TG S
1 CONTINUE
2 WRITE{6,86000) MeNsKyMK,IFN
FETURN
6000 FCRMAT('—~%¥% ERROR "IN FFTZD' INCONSI STENT DIMENSIONS? M=*,
- 16, N=t s £,y ? =4 ,16,° MK=t',[&," IFN=? ,16,° k)
S IF(IFN.,20.0) RETURN
IFNP=T1ASS(IFN)
IF(IFNP.GT-22) GO TO 2
IFNIN=IFNP/ 10
IFNUUT—IFNP IFNIN*10
PHI==2 ,0*P}
AMN=1.0/FLOAT{M*N)
MP1l1=M+1
MM1=M-1
NI3YK=N/K
NBYKK=NBYK/K
KMiz=K=1
KLIM=NBYKK*KML
NSKIPI=NBYKK=1
KP=1

C

C L STEPS
ITT=1TT+1
CALL UTTIME(ITIME(L,ITT))
DO 60 LSTEP=1,L
KP=KPxK
AKP=FLOAT(KP)
REWIND 1TUX
REW¥IMD IUY
REWIND JuUX
REWIND JUY
I1=1
I12=M
Ju=1
JUP=0

C
C NBYK BLOCKS OF X VECTRS EACH



C
C

non
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DO 30 KALOCK=]1 4NBYK

KBM1=KBLOCK~1

NSKIPO=xX8M]1 /K

IF(IFNINGT +2 +0R., LSTEP.GT.1) GO TO 6

READ A BLOCK IN BASE-K DIGIT REVERSED ORCER
NSKIP=JU~1 .
IFI{NSKIP.GE»JUP) GO TO 106
REWIND [UX
REWIND TUY
GO TO 107

106 NSKIP=NSKIP=JUP

107 IF{NSKIP.LE.0) GO TO 109
DO 198 I=1,NSKIP
READ{ITUX)

108 READ{IUY)

109 READ(IUX) X
READ(IUY) Y

GENERATE NEXT BLOCK NUMBER IN BASE~K DIGIT FREVERSED ORDER
IF(KBLOCK.EG.NBYK) GO TO 7
Jup=JU
KV=KLIM
110 IF(KV.GE.JU) GO TO 111
JU=JU~KV
KY=KV/K
GO TO 110
111 JU=JU+KV/KM1
GO TO 7

READ EVERY NBYK*!TH RCOW FROM UNITS IUX AND IUY
56 IX=]
Iy=1
NSKIP=NSKIPQ
DG 4 J=1,K
IF(NSKIP.LE.0) GO TO 42
DO 47 I=1,NSKIP
READ{IUX)
47 READ(1UY)
42 CONTINUE

READ{IUX) BUFFER
DO 3 I=11,12
{IX)}=BUFFER{1)
2 IX=IX+]
READ(IUY) BUFFER
DO 44 I=11,12

Y(IY)=BUFFER(1)
44 TY=1Y+1
4 NSKIP=NSKIPI
I1=11+M
IF({KBLOCK/K)*K  EQ.KBLOCK) I1=1
I12=11 +8imd]
REWIND IUX
REWIND IUY

7 CONTINUE
IF {LSTEP.GT.1) GO TO 12
IF{IFN.GT.0) GO TO 75

FOR THE INVERSE TRANSFORM ONLY,

FORM THES COMPLEX CONJUGATE OF THE INPUT DATA.
DO 73 I=1,MK

73 Y{1)==-Y(1)

FFT BY ROWS
75 0O 8 [=1,MKsM
8 CALL VYFFT {x{
GO TQ 28

MULTIPLY BY THE TWIDDLE FACTORS

12 KM=KBMI1
KF=K®=({_STEP=-2)
KBMODK=9
DO 122 I=2,LSTEP
KBMODK=KBMODK+MOD (KM K ) %K
KF=KF/K

122 KM=KM/K

ALPHA==5,2831853074%FLCAT{KEMODK) /AKP
CC=COS{ALPHA)
Cc=CC
SS=SIM{ALPHA)
5=5S
DO 1S J=¥P1,MK.sM
T JEND=J ¢MM1
DO 14 1J=J4,1J2END
T=X{I1J)*C~Y{IJ)*%S
Y{1J1=X{1J)*5+Y{(IJ)I)*C

14 xX{1J4)=T
T=CxCC~5% 35S
S=Cx3S+5#CC

I)eY{I)sMs1)




nao Nnon

no

NN

15 C=T

FFT BY COLUMNS

28 DO 13 1I=1.M

13 CALL VFFT (X{I)eY(I) MK,M)
IF(LSTEP.LT+L +ORs IFN.GT.0) GO TO 29

FOR THE INVERSE TRANSFORM ONLY.,
FORM THE COMPLEX COMJUGATE OF THE SCALED QUTPUT ARRAY.
DO 543 I=1,MK
X{I)=x{I)*AMN
543 Y{(I)=~Y{T)*AMN

WRITE RESULT OF THIS STEP ON UNITS JUX AND JUY
29 WRITE(JUX) X
30 WRITZ(JUY) ¥

ENDFILE JUX

ENDFILE JUY

SWOP THE FILE POINTERS
I=TUX
IUX=JUX
JUX=1
I=1UY
IuY=9UYy
Juy=1
60 CONTINUE
ITT=1T7T#1
CALL UTTIME(ITIME(1,ITT))
IF(IFNCUT«GTs1) RETURN

UNSCRAMBLE
REFIND JUX
REZWIND JUY

KM1=K~1
KLIM=NBYKK%®KM1
J=1

DO 90 I=1,NBYK
NSKIP=(J=1) /K
11={J=-NSKIP*K)*M~MM1
12=11+MM1
REWIND I1UX
PIWIND IUY
IX=1
Iv=1
DO 69 II1=JsNsNBYK
IF(NSKIPLLE.O0) GO 7O 62
DO 63 IV=1,NSKIP
READ(TIUX)

63 READ(IUY)

62 READ(IUX) BUFFER
DO 65 1V=I1,12
X{IX)=BUFFER(IV)

65 I X=1X+Y
READ{IUY) BUFFER
DO 66 IV=11,12
Y(IY)=BUFFER(IV)

66 IY=1Y+1

69 NSKIP=NSKIPI
WRITS(JUX) X
WRITE(JUY) ¥
IF(I.Z0.N3YK) GO Ta 91
KV=KLIM

80 IF(KV.GE.J) GO TO 90
J=J=KY
KWY=KV/K
GO TO 80

90 J=J¥KV/KM1

S1 ENDTILE JUX
ENDFILE JUY

Sw0oP THE FILE POINTERS

I=IUX

I uxX=Jux

JuUX=1

I=1TUY

LuY=JuUy

Juy=1

RETURN

END
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2) Two-Dimensional FIR Filter Design Programs

SUBROUTINE. HKWBPF (HsMyN MX,FCX14FCY1sFCX2,FCY2,KR,8)
JOSEP M. COSTA 1976 1129 1130
THIS SUBROUTINE GEMERATES THE IMPULSE RESPGNSE CF A TWC-DIMENSIONAL
KAISER WINDOW BANDPASS OR LOWPASS FILTER, WITH CIRCULAR OR ELLIPTIC
SHAPE IN THE PASS BAND.
EXTERNAL SURRQUTINES NEEDEO: BFIO. BFJYLs HMIs AND VMI,

H = SQUARE MATRIX OF DIMEMSIONS M 8Y N THAT ON SUTPUT WILL CONTAIN
THZ IMPULSE RESPONSI OF THE DIGITAL FILTER
ARRANGSED IM A FORM SUITABLE FCR TAKING THE TwO=-DIMENSIOJNAL
FAST FOURIER TRANSFUORM,. THE SUBROUTINE CAMDVE MAY BE CALLED
TO REARRANGE THZ CATA IF DESIRED.

M = FIRST DIMENSION OF
N - SECOMND DIMEINSION OF H
MX = NUM3ER CF POINTS IN THE FIRST DIMENSION

FCX1 =LOWER CUTGFF FREZQUENTY OF THE PASS BAND IN THE X DIRECTION
FCY1l ~_QWER CUTOFF FREQUFNCY CF THE PASS BAND IN THE Y DIRECTION
FCX2 =-UPPER CUTGFF FREQUENCY OF THE PASS BAND IN THD X DIRZICTION
FCY2 =UPPER CUTOFF FREQUENCY OF THE PASS BAND IN THEZ DIRECTION
ALL THESE CUTOFF FRIQUEMNMCIES ARE GIVEN AS FRACTIOVS OF HALF
THE SAMPLING FREQUENCY, THAT IS 0 < F < 1,
KR = NUMBI®R OF SAMPLSS 0OF THE IMPULSE RS SPCONSE OVER THE RADIUS
B -~ B5TA, THE DESIGN PARAMETER FOR THZ KAISER WINDOW THAT CONTROLS
THE TRANSITION BAND AND THE RIFPLE.

LOGICAL LP
DIMENSION H{M.N)

INITIALIZATION
P1=3.141592653
IF{KReLToel +ORe KR,GTL{IMINOI{MX,N)+1)/2)~1) GO TO 9
IF(FCX24LE«0e0 0Re FCX24GE2140 +0Re

- FCY2 eLE«De0 +ORe FLCY2.GEs140 ) GO TO 9
LP= e TRUE »
ISITCIXILGELFOX2 LOR. FOYL1.CELFCY2Y CC TC 10

LP=.FALSE.,
IF{TCX]1oGTe0s0 +ANDs FCY1.GT.0.0) GO TO 10

9 WRITE(6+8000) MyNsMXsFCX1,FLCY1,FCX2:sFCY24KR4B

8000 FURIMAT{*0 %x#% ERROR IN HKWEPF, WRONG IMPUT ARGUMENTS: '/ ,'0¢,

- 24X3s311054G14.4,2110)
STOP

10 IEND=({MX+3)/2
JEND={(N*+3)/2
DO 30 J=1,JEND
00 30 1= I-IENO

30 H{I»J)=0D
BFIGBI —l.O/BFIO(B)
KEND=KR#+1
KR2=KR*KR
ANT1.0/FLOAT(KR2)
X1=FCX1%FCX1
X2=FCX2%FCX2
Y1=FCY1%FCY1
Y2=FCY2XxFCY2
X¥1=PI*FCX1*FCY1
XY2=Pl1*#FCX2*FCY2

THO LOOPS OVER THE FIRST QUADRARNT
DO 60 K¥Y=1,KEND
KYY={KY=1)% (KY=1)
YIKY=Y1*FLOAT{(KYY)
Y2KY=Y2XFLOAT(KYY)
DO 5D KX=1,KEND
KXX={KX=1)% {KX=1)
K=KXX+KYY

VALUE OF THE IMPULSE PESPONSE AT THE ORIGIN
IF{K.NE.DQ) GO TO 40
T=XY2
IF( NOT.LP) T=T=-XY1l
HIKXsKY)=0.3%¥P1*T
GO TO 60

VALUSE OF THE IMPULSE RESPONSE QUTSIDE A CIRCLE CF RADIUS KR
40 IF{K.GT.XR2) G0 TO 60

GENERATSE THE COEFFIENTS OF THE ILEAL FILTER USING THE FUNCTION B8FJ1
SFC=SQRT{X2*FLOAT{KXX)+Y2KY) ~
S2=FLOATI{K)
S=SQRT(52)
T=XY2#B3FJ1{PI*SFC)/SFC
IF{L?) GO TO 30O
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SFC=SAQRTI{XI*FLCAT{XKXX) +Y1IKY)
T=T-{XY1%*BF J1(P1*SFC)/5FC)

MULTIPLY THZT COEFFICIENTS OF THE IDEAL FILTER BY THE COZFFICIENTS OF
A CIRCULARLY-SYMMETRIC KAISER WINDCW

S50 HIKXsKY)=Tx*BF [O{SGRT{1.,0-S2*AN))*BFIO0BI

60 COENTINUE

COPY THE RESULTS INTO THE OTHER QUADRANTS BY SYMMETRIES’
CALL VMI(H{1,2)3MsN=1,IEND)
CALL HMI(H{2,1)sMsNyMX~1)
RETURN
END

FUNCTION BFJ1 (X)
Ja¥, COSTA 1875 1114
THIS FUNCTION GENERATES THE FIRST~0ORDER BESSSL FUNCTION OF THE F
KINDs JI{X)» TO WITHIN SPECIFIED ACCURACY USING THE FOLLOWING PO
SERIES EXPANSION.

011
IRS
WER

N
BFJ1(X) = (X/2) + SUM ((~X/2) %% (2¥K+1) I/ L LFCT(K)**2)x(K+1))

K=1
FOR X BETWEEN 0.0 AND 25.0s AND WHERE FCT(K) JENCTES THE FACTIRIAL
OF Kp JeSes FCTIKIZKH(K—=1)% +00 *3%x2%],
IF X 1S GREATER THAN 25.0 THE FOLLOWING ASYMPYQOTIC SERIES IS USEDS
WHICH GIVES AT LEAST SIX EXACT DECIMAL PLACES (SEVEM IF X IS GREATER
THAN 100.0). )

BFJL(X) = (1.,/7SQRT(PI®X)I*{(PL{XI+QLIX))I*SIN(X)~=(21{X)~-Q1{X)I*CBS{XI)
WHERE?
P1 = 3.141592653589793238406
P1(X) = 1.0 + 0,1171875/(X*%*2)
Ql{X) = 0375/X~0.1025390625/(X%%3)
ALt CALCULATIONS ARE DONE USIMC SCOURLE PRIZCISION,
REFERINCE?: S, Me SELBY (EDITCR)s STANDARD MATHEMATICAL TABLES, 21ST
EDITION, CLEVELAND, OHIO: CRC, THE CHEMICAL RUBBER COss

1973, PP. 534~335.

DGURLE PRECISION DBLE,DFLOAT,DABS,DSQRT .DC3SsDSIN,
- DT+DBFJ1,0LPT.DFACT,DX,CX2,0P1,P1,01
DATA DP1/Z413243F6A8885A30/, DT/1.0 D-08/

DETERMINE WHICH ASYMPTOTIC SERIES WILL BE USED
IF(X.LE.?S-O) GO To 3

THE ARGUMENT IS GREATER THAN 25,0
DX=D3LE{ X}
Dx*2=DX%*DX
P1=1.0 20+0

21171875 DO/DX2
Ql=0.375 DO/DX~-

le

(P

041025350625 DO/{DX2%DX)
C/DSARTIDP I 2DX) ) *

BFJI=SNGL(( D
+01)*0SIN(DX)=-{P1=Q1)*DCOS(DX)) )

- {
RETURN

1
X
o]
1

THE ARGUMENT 1S LESS THAN OR EQUAL TO 25.0
3 DBFJ1=0.5 DO*DBLE(X)

DPT=DBFJ1

DFACT==DPT*CPT

AT EACH STAGE OF THE DO-LCOP A MNEY TERM OF THZ PDWER SERIES
EXPANSION IS GENERATED AND ADDED TO THE RESULT

DO 6 K=1,100

DPT=DPTXDFACT/DFLIAT (K*X+K)

DBFJ1=DBFJ1 +DPT

EXIT THE DO-LOCP UPON REACHING THE CESIRED ACCURACY
IF(DABS(DPT).LT.DT) GO TQ 9

6 CONTINUE
WRITEZ(E,»10) X»BFJ1 '

10 FOPMAT(*0 DESIRED ACCURACY NOT OBTAINEDs. BFJ1(*yF944,') = *,59.4)

THE FINAL BESULT IS GIVEN IN SINGLE PRECISICN
9 BFJ1=SNGL(DEFJ1)
RETURN

END
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FUNCTTON BFIO (X)
JeMs, COSTA 1975 1113 1921
THIS FUNCTION GENERATES THE MODIFIED ZEROTH-ORDER BESSEL FUMCTIOM
CF THZ FIRST KIND, [0(X)e TO WITRHIN SPECIFIED ACCURACY USING THZ
FCLLOWING POWER SERIEZS EXPANSION,

N
BFIO{(X) = 1 + SUM [({X/2)#x{2%xK)}))/{FCT(K)%%*2)
K=1 .
FOR X BZT¥EEN 0.0 AND 20.0« AND WHERE FCT(K) DZNUOTES THE FACTORIAL
OF K¢ TeEes FCTLK)=K*{K=1)F oo0 #*3I%x2%1,
REFERENCE: SeMs SELBY (EDITOK ), STANCARD MATHEMATICAL TABLES; 21ST

EDITION, CLEVELAND, OHIO: CRC, THE CHEMICAL RUBBER CQOes
1973y PAGE 537

DATA T/1.0E~08/

INITIALIZATION
FACT=0.25*X=X
PT=1.0
BFIO=PT

AT EACH STAGE CF THE DO-LOOP A NEW TERM OF THE POWER SERIES
EXPANSION IS GENERATED AND ADDED TO THE RESULT

DG &6 K=1,25

PT=PTxFACT/FLOAT (K%K

BFID=BFI0+PT

RETURN UPON REACHING THE DESIREO ACCURACY
IF(BFIO*TGT.PT) RETURN
& CCONTINULE

WRITE(6+10) X,AFI0

10 FORMAT('0 DESIRED ACCURPACY NOT OBTAINEOD, BFIO(® )FTe44s%) = '",F9.4)
RETURN
END

SUBROUTINE HMI (XsMs Ny MX)
JOSEP M., COSTA 1976 1129 1130
THIS SUBROUTINE COPIES THE UPPER HALF OF A MATRIX INTO THE LOWZIR HALF

OIMENSION X (MsN)
MXP1=MX+1
MXB8Y2=MX/2
00 6 I=1,MXBY2
IC=MXP1-T
DO & J=1,N

6 X{IC,J)=X{1+J)
RETURM

ENTRY VMI (XsMysN,MX)
THIS ENTRY COPIéé THE LEFT HALF OF A MATRIX INTO THE RIGHT HALF

NP1=N+1
NBY2=N/2
DO 9 J=1,NBY2
JC=NP1~J
DO 9 I=1,MX

9 X(1,JCI=X(T1,3)
RETURN
END
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3) Two-Dimensional IIR Filter Design and Realization Programs

. SUBROUTINE CDFILT (ZPyNZPNPsNZ WORKsNROT yCCoNF, IFILT LHEP By
- CUTOFF +MODE) -
JOSEP M, COSTA 1975 0707 1459
THIS SUARDUTINE PREPARES YHE CALL TO DFILT FOR CISCULARLY=-SYMMETRIC
TRC-DIMENSIONAL DIGITAL FILTERS.

THE ARGUMZENT LIST IS SIMILAR TO THAT OF CFILT WITH THE FOLLOWING
EXCEPTIONS,

WORK - WORK ARRAY DIMENSIONED AT LEAST 3%*NROT.

NF = MUST BE SUPPLIED FOR DIMENSIONING
NF = MAXO{MZPNP=NZ,NZ)%XNROT*MAXC(1,LHBP=-1).
8w - - BANDWIDTYH OF A CIRCULARLY=~SYMMETRIC BAND-PASS FILTER

(IF LHBP NE.3 THZ VALUE OF B%W IS IGNJRED).,
CUTOFF = CUTOFF FREQUENCY 0OF THE CIRCULARLY-SYWMETRIC 2~D FILTER.
MOCE - IF MODE=1 THE POLYGONAL WHICH AFPRCXIMATES THE CIRCULARLY-

SYMMEETRIC FILTZR HAS A VERTEX ON EACH AXIS, QOTHERWISE

ZEPD-CEGREE AND 270~-DEGREE ROTATED FILTERS WILL FISULT,
LHBP - IMPUT PARAMETER WHICH DETERMINES THE TYPE OF FILTER

=1 LOW-PASS DZSIGN

=2 HIGH=-PASS DESIGN

=3 BAND—-PASS DESIGN.

DIMENSION ZP{23NZPNP), CC(16,sNF),s WORK(3,NR0T)

INITIALIZATION
DATA ZCRH,ZCRL/ 7071068, ,2928932/
DATA DFMAX/1,0E=-2/» NITMAX/50/
DBETA=3Q0.0/FLOAT(NRGT)
BETA0=270.0
IF{MODE.%0el) BETAO=BETAO+0 «.S5*DBETA
NP=NF
IF{LHBP.EQs3) NP=NP/2
ZCR=ZCRH
IF{LHBP.EQ.2) ZCR=ZCRL

DETERMINE THE EQUALLY~SPACED ANGLES OF ROTATION
DO 6 J=1,NROT
WORK (14 JI=BETAO+FLOAT{J~-1)*DBETA
6 WORK(2,J)=CUTOFF

FILTZR DESIGN
CALL DFILT (ZP,NZPNPyNZ,WORKyNROTsCCyNP sIFILTSsZCRyDFMAXINITMAX,IE)}
NTOT=NF
IF{LHBP.LT.3) GO TO 10

CCMPLETE THE CESIGN FOP BAND—-PASS FILTERS
(AN ITERATIVE ALGORITHM COULD BE INCORPORATED HERE TO HAVE MDRE
CCNTROL ON THE CUTDFF FREQUENCIES OF THE BAND-PASS FILTER)
DO- 9 J=1,.NROT
9 WORK(2,J)=CUTOFF-BW
CALL DOFILT{ZP,NZPNP,NZ;WORKsNROT+TC{1,MP+1) NP, IFILT,ZCRyDFMAX,
- NITMAX,IE) .

NORMALIZE, PRINT, AND PUMNCH THE FILTER COEFFICIENTS
10 CALL PTPMCC(CCsNFsl)

RETURN

END

SUBROUTINE OFILT (ZP,NZPNP,NZsPARMNMNPOT ,CCoyNF, IFILTZERGCR,
- DFMAX, NITMAX,IERROR)

JOSER M. COSTA 1975 0707 1452

% THIS ROUTINZ CONVERTS A ONE-DIMENSIONAL CONTINUCUS SILTZR INTO A
* TWO=-OIMENSIONAL RECURSIVE OIGITAL FILTER WITH SPECIFIZD

x CUT~-0OFF FREQUENCISS IN A GIVEN SET 0F DIFECTIONS IN THE 2-0

* FOURIER PLANZ. 1T CALLS THE SUBPROGRAMS RTMI AND FRESIN.

FASd - COMPLEX VECTOR OF LENGTH NZPNP CONTAINING THE COMPLEX ZERO

AND POLS LOCATICNS OF THE CONTINULCUS FILTER. ALL THE ZEROS
FI1RPST FOLLOWED BY THE POLES,

NZPNP = DIMENSION 0F ZP (MUMBER OF FINITE ZE30S PLUS NUMBER OF
FINITE POLES IN THE 1-D CONTINUCUS FILTEF),

NZ -« NUMBER UF FINITE ZERGS IN THE 10 CONTINUCUS FILTER.
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PARM

NROT -

cC
NF

IFILT =~

ZEROQCR =~
DFMAX =~

NITMAX =

'

THE RCOTATED FILTERS
FREQUENCIES IN THE
CRIZNTATIONS OF
PAPM{1yI)s I=1lsaeestNROT,
PARM{2,1), I=1 « D NROT,
PARPMA(3,1)s I=1lceecsNRQOT,
SSCONT SIMEMSION OF PARM.
ASCADED TO FORM

« COMPLEX AFRRAY OF DIMENSIONS 8 BY NF,
20 DIGITAL FILTER.

GF ELEMENTARY FILTEIS IN THE

CALCULATED OQUTSIDE THIS SUBROUTINE .

HOW THE ELLIPTICALLY~SHAPED

CONTAIN THE COEFFICIENTS OF
-~ SECGCND DIMENSION OF CC»
CASCALE. IT MUST RE

NUMBES

FILTER PARAMETER THAT DETERMINES

2D ARRAY DF DIMENSIONS 3 BY NROT CONTAINING

IN THE FCRTH CUADRANT
DIRELTICNS
THE EFEUTATED FILTERS.
CONTA LN
CONTAIN THE
WORK AFRAY.

NUMAER CF
THE CELLIPTICALLY~-SHAPED FILTER.

PR

THE

THE

THE ANGLES OF
AND THE CUTOFF

ENDICULAR TO THE

ANGLES OF ROTATION.
CUTCFF FREQUENCIES.

FCTATED FILTERS TO BE

WHICH OGN OUTPUT WILL

FILTER wILL B8E COM3INED WITH DATA TRANSFORMATIONS TO FORM A
FILTER WITH QUADRANTAL SYMMETRIES,

INPUT

THE RESULTANT CUTGCFF FREQUENCY .

MAX I MUM NUMBER OF

SEF SUBROUTINE CCP2.
NORMALIZED MAGNITUDCE RESPCONSE AT THE CUTOFF FREQUENCY.
VALUE WHICH SPECIFIES THE UPPER BOUND OF THE ERROR OF

ITERATIGCM STEFS SPECIFIED.

IERROR - REZSULTANT ERROR PARAMETER CODED AS FOLLOWS

105

110

[y
r——

un

- NO ERROR,

=] = TRONG INPUT ARGUMENTS,

=2 -

=3 = NO CONVERGSENCE IN RTMI,
EXTERNAL FRES1

_OGICAL LCONV,PREWRP

DIMINSION ZP(2.NZPNP),
DATA
DATA
DATA
DATA

DEG/ 5729577 02/,
MINUS/'='/, BLANK/?
PREWHP / TRUEL/

INITIALIZE THE ITERATION
NP=NZPNP=-NZ
NORDR1=MAX0O (NZ4sNP)
NG=NORDR1*NROT
IFI(NG.EQ.NF) GO TO 5
¥RITE(6,8000) NF
IERRQOR=1

GO TO 950

WRITELH, 6004)
EPS=DFMAX
IEND=NTITMAX
PDF=FLOAT{NROT)
1ERROR=0

NZRROR=0

K=0

DO 6 J=1,NRQOT

DO 6 1Z=1,NORDR1
X=K+1

WRITE(E»S010) KIIZsPARM{1,4J}
PIB2=0.5*P1

PFR2=0,0

DD 10 J=1sNROT
PARM(3 2 J)=PARM(24+J)

ITERATION BEGINS

DO 900 NIT=1,NITMAX
LLCONV=,TRUE »

K=0

DO 600 J=1,NROT
BETA=PARM(1 4J)
SB=SIN(BETA*%RAD)
CB=COS{BETA%XRAD)
DELTA2=PIB2*PARM{3,J)
IF{PREWRP) DELTA2=TAN(DELTAZ2)}
DO 600 1Z=1,NCRDRI1
IP=NZ+IZ

K=K+1

CALCULATE THE COEFFICIENTS CF THE
IF{IZ.GT NZ} GO TO 110
ZPR=DELTAR2*ZP{1+,12Z)
ZPI=DELTA2*ZP{(2,1Z)
CCl1sK}= CB-SB-ZPR
CC(3,K}= CB+SB=ZPR
CL(5»,K)=-CB-SB~-ZPR
CC{7,K)==CB¥SB~ZPR

DO 105 L=2,8,.2
CC{L»K}==ZP1I

GO TO 11%

DO 112 LL=1+7»2
CC{L»K)I=1,0

CC(L+1,K}=0,0
IF{IPGT.NZPNP) GO TO 117
ZPR=DELTA2%ZP{1,1IP)
ZP1I=DELTA2%ZP{2,IP}

PARM(3 »NRQT )

SHIFT/Qa0/sXLI/0.0/sXR1/0e999/,SCMIN/Q.01745/

PI/e31a1593E Q1 /s
1/ 3 NERMAX/10/

FILTER

MO CONVERGENCE AFTER NITMAX ITERATION STEPS,

NO IMPROVEMENT IN THE LAST ITERATION STEP.

CC{164NF)
RAC/.1745326E-01/
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CC{ 9+K3¥= CB-SRA=~ZPR
CC(11sK)= CB+5B=~ZPR
CC(13,K)=-CB~SB~ZPR
CCl15+K)=—CB+SB-ZPR
D0 116 L=10,1642

116 CC(L,K)==2ZPI
GO TO 140

117 DO 118 L=9915,2
CC(LsK)=1,0

118 CClL+1,K)=0.0

140 IF{ABS(SRP).GTSCMIN) GO TO 145
CCl 3+K)=1.0
CC( 4+KI=0.0
CC{11sK)=1.0
CC(12,K)=0.0
GO TQ 150

145 IF(ABS(CB).GT.SCMIN) GO TO 400
CC( S+,K)=0.0
CCl 6+K)=0,0
CC(13,K)=0.0
CC(14+K)=0.0

150 CC{ 7.,K)=0.0
CC{ 8,K)=0.0
CC{15,K)=0.0
CC{15:,K)=0.0

400 IF{SHIFT,£Q.0.0) GO TO 600
DO 500 L=1.,4

CC{LsKI=CCAL,KI+SHIFT*CC(L+4,K)
S00 CCIL+3sK)=CC{L+8 ;KI+SHIFT*CC(L+12,K)
600 CONTINUE

IF(NIT<SQs1) WRITE(6,6011)

* CHECK THE CUTOFF FREQUENCY
FF=FRESIN(CCyNG, IFIL T, ZEROCR)
ICARR=MINUS
ADF=0.0
DO 700 J=1,NROT
AA=ANGLE (PARM(1,J)+50,0)
CALL RTMI (FRC,FRES, FRES1 sXLIsXRI+EPSs IEND,IER)
IF{IZER.EQe0) GO TO 650
IERRGOR=3
LEREOR=650
NERROR=NERROR+1
WRITE(65,6012) IER, LERROR
IF (NERROR «GTs NERMAX) &GO

650 DF=PARMI(2,J)-FRC
ABSDF=ABS (DF)
ADF=ADF+ABSDF
IF(ABSDF«GE «DFMAX) LCONV=.FALSE,
WRITE(6,€E015) ICARR,NIT,PARM(2+J) sFRC,OF ,PARM(3:+J) sFRES,ADF
ICARR=BLANK

700 PARM{3,J)=PARM(3,J)+DF
IF(LCONV) GO TO 9S50
IF(ADF.LT.PDF) GO TO 800
IERROR=4
GO Ta 950

800 PLCF=ADF

00 CONTINUE

® END OF ITERATION
LERROR=9S0
IERROR=2
WRITE(6,6012)
950 WRITE(6,8001)
RETURN

NITMAX,LERROR
IERROR

c )
6006 FORMAT(! WO~-DIM FILTER #',10X,'ONE-CIM FILTER #% 310X+ *ROTAT ION
- {(DEGRE
6010 FORMATI(
6011 FORMATI(

1 T

g3%)

0'313X+sI3523X:13,17XsF1043)

1 "NIT’q10X;’CUTDFF'.19X.'FRC'plEX,'DF'ol&X,'FRD'-

66X, 'FRES? 16X *ACF "4/, ?0")

, tk%=x ERROR *** VALUE OF 1ER CP NIT IS ',13.° AT ',14)

1 2 I3.6{EX+GlELT)) ) )

01, 9%x%% ERROF =«% DIMENSIONS OF CC DO NGT MATCH WITH THE N
T

0 I

L}
£5)
. ®
1 L]
- 16X
6012 FORMAT(? 1
6015 FORMAT(A
8000 FORMAT(?
~-yMBER QF
8001 FORMATI(*
END

BILINEAR FILTERS THAT WILL BE GENERATED Atk 4,216)
ERROR= 'y 14)
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FUNCTION FRESIM (CCoNF,IFILT,ZEROCR)
JOSEP M, C0OSTA 1975 0726 0513
THIS FUNCTION CALCULATZIS THE MAGNITUDE RESPGONSE OF A 2D DIGITAL
FILTER AT A POINT GIVEN IN CARTESIAN COLFuIl\ATE< OR IN POLAR
COORDINATES.
FRES IN SUPPLIES THZ FILTER COEFFICIENTS AND DITERMINES THE SCALEZ
FACTOR FOR A RESPONSE OF 1.0 AT THE QORIGIN,

cC - 20 ARRAY OF DIMENSIONS 16 BY NF CONTAINING THE FILTER
COCFFICIENTS.
NF = SECOND DIMINSION OF CC (NUMRBER OF BILINEAR FILTERS IN THE'

CAQCADE).

ENTRIES
COORD = TO SUPPLY THE COORDINATE FR2 EBE=0% CALLING FRESOe
FRES0 =~ MAGNITUODOE RESPONSFE AT A POINT OEFINED BY THE
CARTESIAN COORDINATES IN THE FREQUENCY PLANE,
FR1 AND FR2.
ANGLE = TO SUPPLY THE COORDINATE THIZTA BEFORE CALLING FRES1
FRESI] - MAGNITUDCS RESPONSE AT A POINT CEFINED BY THE
PILAR CCORDINATES IN THE FRIZIQUENCY PLANE,
RFR AND THETA.

LOGICAL TN, ROTS0, COMPLX{20)

DIMENSION CC{16sNF)

DATA PI/.3141593E 01/ RAD/.1745329E~01/
DATA PBOUNDSTEP/1.0 ES0+1.0E20/

INITTALIZATION
JFILT=MOD{ 1 ABS{IFILT )5}
ROT90=.TRUE .
IF(JFILTWNE.3) GO TO 10
JFILT=JFILT=-1
ROT90=.FALSE.

10 DO 30 K=1,NF
COMPLX(K)=sTRUE.

DO 20 J=2,16,42
IF(CC(JsX)sNELD.0) GO TO 30

20 CONTINUE
COMPLX{K)=4FALSE,

30 CONTINUE
SCAL.E=1.,0
DELTA=0.0
NP=NF
IN=.FALSE.

ER21=1.0

(o}

m

Q

o

HANVN =N

COO™w
e o 6 00
[eYeR =Y oY)

[w NN ]

CARTESIAN CCORDINATES.
ENTRY COORD (FR2)
PIFR2=PI*FR2
RETURN
ENTRY FRESO (FR1)
PIFR1=PI*FR1
GO TQ 40

PCLAR CCORDINATES.
ENTRY ANCLE (THETA)
PICT=PI=COS(THETA*RAD)
PIST=PI*SIM(THETA*RAD)
RETURN
ENTRY FRES1 (RFRY
PIFRI=PICT*RFR
PIFR2=PIST*RFR

a0 ERZI CUCS(PIFR1)
I121=SIN{RPIFR1)

ERIZ‘CDS(PIFR?)

EI12=SIN(PIFR2)

EF22=EP2]1¥ER12-EI21%E112

EI22=FR21*EI124E121%ER12
50 F2R=1.0

F2I=0.0

DO G0 J=1,JFILT
DO 60 K=1,NP
P1=CC( 14X)+CC{ 34K)-

P2= CC{ 44K)
P3=CC{ GeK)+CC{11,5K)
P4= CC(12,K)*
PS= CC( 3,K)
PE6=CC{ 2,K)+CC{ 4,K)
P7= CCL11.K) =

P8=CCIl10,K)+CCl12+K)*
ANR=P1~-[22
ADR=P 3~

249
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ANI=P5+P&
ADI=P7+P8

ACM=Z ADP¥ACR +ADT*ADI

TEMPR={ ANR¥ ADR+ANT*ADI ) /ADM
TEMPI=(ANT®*ADR=ANR*ADI)/ADM
TEMP=F 2R¥ TE #PR=F 21 *TEMP1
F2I1=F2R*TEMFI+F2 I*TEMPR
F2R=TEMP

IF{.NOT«COMFLX{K)) GO TQ 55
ANR=P1+P2

ADR=P34+P4

ANI=P5~P6

ADI=P7-P8

ADM=ADR* ADR+ADI*AD1T

TEMPR= ( ANR*ADR+ANI *ADTI ) /ADM
TEMPI=({ ANI*ADR—~ANR*ADI ) /ADM
TEMP=F2R*TEMPR=F2 I *TEMP 1
F21=F2R*TEMPI +F2 [ *TEMPR
F2R=TEMP

CHECK FOR PDSSIBLE OVERFLOWS AND SCALE IF NECISSARY
55 IF(F2R.LT.PBOUND .AND. F21.LT.PBOUND) GO To 60
SCALE=SCALE=*3STEP
WRITE(6+1000) SCALE.F2R,F2I
F2R=F2R/STEP
F2I=F2I/STEP
60 CONTINUE
IF(ROT90) GO TO 70
El21==-E121
=112=~=El12
ElI22=-£E122
GO TO 90-
70 TEMP=ER21 .
ER21=ER12
ER12=TEMP
TEMP=EI21
El21=-EI12
EI12=TEMP
ER22=ZR2I1*ERI2-EI21*ET12
EI22=ER21*E112+EI121%ER12
90 CONTINUE
FRESIN=SORT (F2R%F2R+F2I%F2[ ) *SCALE-DELTA
IF{IN) RETURNM
IN=+ TRUE»
DELTA=ZEROCR
SCALE=1,0/FRESIN

RETURN
1000 FORMAT{'0 TO PREVENT OVERFLQOWS IN FRESIMN THE Fa Rs HAS BEEN SCALED
SCALE= »"4G16479' F2R= *'3,G16.7s" F2I= 9+G1647)
DATA COORD,FRESO,ANGLEFRES1/4%0.0/
END

SUBROUTINE PTPHCC (CCyNF,INORM)
- JOSEP M, CCSTA 1975 1018 1606
THIS SUBROUTINE NORMALIZES, PRINTS. AND PUNCHES THE COEFFICIZINTS OF
A 2D DIGITAL FILTER.
1F INORM=1 THE COEFFICIENTS OF EACH BILINEAR FILTER ARE NIRMALIZED
HWITH RESPECT THE INDEPENDENT TERM IN THE DENOMINATOR (311).

DIMENSION CC(164NF)
LOGICAL LPUN

LPUN=.FALSE.

LPUN=,.TRUE.

IF (INORM,NE.1) GO TO 1000

NORMALIZE WITH RESPECT TO B811(K)

CO 999 K=1,hNF

U=CC{ 9,K)#*CCL 9,KI+CC(10,K)I*CC{10.K)

ZPR=CC{ 9.X)/ U

ZPI=CC(10sK)/U

CC{ 9,:K)=1.0

CC{10+K)=0.0

JsST=11

JEND=16

DO 999 I=1,2

DO 998 J=JST,JEND,2

TEMP=CC(JsKIRZPR+CCIJ+1,KI*¥ZPI

CC{JI+14KI=CCLI+1,4KI*ZPR-CC( I+ KI*ZPI
G558 CC(JyK)STEMP

IF{1.EQ«2) GO TO 999

JST=1

JEND=8
999 CONTINUE
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6100 FORMAT (tyt/e

[aleYalaYaXalalaXaXaYaNaYaYaYaYa)s)

1000 WRITZ(6+6100)
WRITE(6,7500)
IF(NOT.LPUN)

WRITE(7,7000)

PRINT AND PUNCH THE COEFFICIENTS OF THE FILTER

CcC
RETURN
ccC

WRITE(7,5600)

RETURN )

'+ *COMPLEX COEFFICIENTS OF THE CASCADE OF ROTATED FI
~LTZRS.")

S600 FOIMAT(2X,78(*%x7%))

70C0 FORMAT(8F10.7)

TS00 FORMAT(1HO,255( SXel1H({sF10o741HssF1l0+s7+SH) + {3F10e731HssF10.7
1 BH} Z1 + {sF10e7531H2sF10s7+8H) Z2 + (4Fl10.7s1Hss
2 Fl0.747H) Z1 Z2+/» ’ BTSN 1 I3( P _")asat B,
3 SXs IH(sF10e7s1Hs s FI0a795H) + (4F 1077 s1Hs¢F10a7
4 BH) Z1 + (sF10e7stHssF10.738H) Z2 + {93F10e7elHss
S5 Fl0e7 s7H) Z1 Z2./+1H0))
END

SUBROUTINE GFRES (AsMoNsX1+X2s¥1,5Y2,CCoNF, IFILT,LHBP)
JOSEP M, COSTA 1975 0728 1602
THIS SUBROUTINE EVALUATES THE MAGNITUDE RESPCNSE OF A TWO-DIMENS [ONAL
DIGITAL FILTER. IT CALLS THE FUNCTION FRESIN,

MATRIX wHICH ON QUTPUT WILL CONTAIN THE MAGNITUDE IESPONSE.
FIRST DIMENSION OF A.
SECOND DIMENSION OF A,
LOWER FREQUENCY POINT IN
UPPER FREQUENCY POINT IN
LOWER FREQUENCY POINT IM THE
UPPTR FREQUENCY POINT IN THE RECTION
{NOTE THAT =1.,0<X1<X2<1.,0 AND =1,0<Y1<Y2<1.,0)
20 ARRAY CONTAINING THE FILTER COEFFICIENTS.
SECOND DIMENSION OF CC.

INPUT PARAMETER. SEE CCP2.

INPUT PARAMETERS, SEE FILTER,

THE TION
THE TION

EC
REC
FECT ION

LI A )

X DI
X DI
Y DI
Y CI

IFILT
LHBP

DIMENSION A{M,N).
NP=NF
IF(LHBP.EQ.3)
DX=0o
DY=0.
IF(MeGT 1)
IFINLGT 1) DY=(Y2=-Y1)}/FLCAT(N-1
F=FRZISIN(CCsNP,,IFILT 0.0}
DO .5 J=1sN
F=COORD(Y1+DY*FLOAT(J~1))
DO 6 I=1,M
AllsJ)=Fr= SO(X1+DX*FLOAT(I-1))
IF{LHBP.EQe2) A(I1J)=1,0=A(1,J)
CONTINUE
IF(LHEBP L Te3). RETURN
F=FRZSIN(CC(1 yNP+1 )4 MNP,IFILT,0.0)
DO 9 J=1,N
F=COORD(Y1+DY*FLOAT(3-1))
DO 9 I=1,M
A(T s J)=A{ T J)~FRESO(X1+DX*kFLOAT(I~1))
RETURN
END

CC(16sNF)
NP=NP/2

DX:(XZ—X])/FLOAT(M—I;
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SWBROUTINE FILTER {(A:BsMsNLHBPy COEFFs CCONFIFTILT o WoNW)
JOSEP M, COSTA 1975 0728 0222

THIS SUBROUTINE PREPARES THE CALL TO CCP2 FOR HIGH-PASS AND
BAND~PASS FILTERS.
IT CALLS THZ SUBROUTINE ASCALE THAT NORMALIZES THE OUTPUT.

A -~ MATRIX CONTAINING THE DATA TO BE FILTERED.,
IF LHEP=3 THE CONTENTS OF A wILL PE LOST.
B = SAME AS A.. ON GCUTPUT WILL CONTAIN THE FILTERED DATA.
If LHBP=1 {LOW~PASS FILTER) A AND B CAN BE THE SAME ARRAY.
M - FIPST DIMENSION OF A AND B,
N = SECOND DIMEMSION OF A AND B
LHBP - INPUT PARAMZTER DETERMINING THE TYPE OF FILTER.

=1 LCs~PASS FILTER,
=2 HIGH=-PASS FILTER.
=3 BAND=-PASS FILTER.
COEFF < INPUY COSFFICIENT. SHOULD BE
=+1 FOR HIGH=PASS AND BAND-PASS FILTERS.
O0<COEFFL1 FOR HIGH=-EMPHASIS.

ccC - 2D ARRAY OF DIMENSIONS 16 BY NF CONTAINING THE
COEFFICIENTS OF A 2D FILTER.

NF = SECOND DIMENSION OF CCo.

IFILT = INPUT PARAMETER. SFE CCP2.

w - WORK ARRAY DIMENSIONED AT LEAST

(M+1)*(NF+1) *6 FOR LOW~PASS AND HIGH-PASS FILTERS.
{ME1)*(NF/2+1)%6 FOR BAND-PASS FILTERS,.
Nw - DIMENSION OF W,

DIMENSION A{(My;N}s B{MsN)s CC{16sNF)s W{NW)
MN=MXN
NP=NF .
IF(LHBP.EQ.3) NP=NP/2
MP1=M+1
NPP1=NP+1
CALL CCP2Z (BsMiN+CCyNP,»IFILTsW,MP1:NPP1)
CALL ASCALE {BsMNy+1,BMIN,BMAX)
IF(LHBP.EQ.1) RETURN
IF{LHBP .EQa3) CALL CCP2 (AsMsN,CC{ 1 sNP+1)sNP,IFILT»Ws8P1:NPP1)
CALL ASCALE (A+MN.+1,BMINsBMAX)
DO 6 J=1N
DO 6 I=1.M
6 B{l+J)=A(1,J)=CCEFF%8{1,J)
CALL ASCALE (BsMNs+1+sBMIN,BMAX)
RETURN
END

SUBROUTINE CCP2 (DsMsNsCCoNPH, IFILT W sMP1,NPP1)

JOSEP M, COSTA 1975 0727 0400
COMPLEX CASCAPDE PROGRAMMING OF A TWO-DIMENSIOCNAL
RECURSIVE FILTER USING REAL ARITHMETIC.
THE FILTRATION IS DONE IN PLACE.

MATRIX CONTAINING THE DATA TO BE FILTERED

D -
M - FIRST DIMENSIGON OF D
N - SECOND DIMENSION OF D
ccC - 2=-D REAL ARRAY (OF CIMENSICNS L& BY NP CONTAINING THE
COEFFICIENTS OF A 2—-0 ELLIPTICALLY-SHAPEFD FILTERS
QUTSIDI THIS SUBROUTINE CC CAN BE TREATED AS A 2-D COMPLEX
ARRAY OF DIMENSIONS 8 BY NP,
NP - SECCND DIMENSION OF CC (NUMBER OF BILINEAR FILTERS IN THE
. CASCADZ NOT INCLUDING COMPLEX CONJUGATES)
IFILT = INPUT PARAMETER
= 0 D0 NOTHING {(RETURN)
=1 F
= 2 F R{ 20) F R(270)
==2 F R{270) F R{ S0)
= 3 F R{180) F R(180)
= 4 F R{ 90) F R({ 90Q) F R( %0)  F R{ 90)
W - WDORK ARRAY DIMENSIONED AT LEAST (M+1)*(NP#+1)}*6
MP1 = M #1
NPP1 = NP+1

LOGICAL COMPLX
DIMENSION D{(MsN)» CCL16,NP)y COMPLX{ £€)s W(MPl,NPP1,5)

INITIALIZATION
IF(IFILTEGe0) RETURN
JFILT=IABS(MOD{IFILT,»5))
IROT=1

IROT1=1

GO T (11,12,13,14),JFILT
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(212 BK3] 3]

nn

11
12

15
13

14

i8

20

30

60

200

600

606

660
151-1-]

700

IRGT=0

GO TO 14

IF (IFILTWLT.0) GO TO 1S
IROTL=3

GO TO 14

IROT=3

GO TO {4
JFILT=JFILT~1

IROT=2

IROT1=2

IFI{NP .LE«0) GO TO 30
DO 20 J=1,4NP
COMPLX({J)=eTRUE

DO 18 I=2016s2

IF{CC(I»J)eNED.D) GO TO 20

CONTINUE
COMPL X(J) =+ FALSE.
CONTINUE
IEND=NP+1
KEND=M+1

DO 700 IC=1.JFILT

SET THE BOUNDARY CONDITIONS

DO 60 I=1.IEND,
W(i1:1s3)=0.0
W(ils14)=0e0
W{l:1:6)=040
DO 60 K=1,KEND
Wi{KsIo1)=0.0
W(Kslo2)=00
W(KeI5)=0e0

RECURSE BY ROWS
DO 666 L=1i¢N

RECURSE BY COLUMNS
DO 606 Ki=1l.M
K=K1+1}
Wi{Ke1:6)=D{K1sL)

CASCADE OF BILINEAR FILTERS

DO 600 I=24 IEND

I11=I~1

IF(COMPLX(I1)) GO TO 200
W(KnI 6) 1,I11)#wW(K
1)*=w{K

N
i
0O
(]

3
GO TO 600
W(KesIs3)

U~
"t g

W(KsIed)

-

W(Kel e6)

MbWwNe pUN-
N N O &N O N UGl e e

-

CONTINUE

DIK14L)I=W(K+IEND+6)
CONTINUE

DO 660 K=2,KEND
W(KesleSI=W(Ks16)
DO 660 I=2,IEND
W(KeIsl)=wWlKoele3)
N({Kels2)=W{(Kelsa)
W(KosI+S)=W(Ks 156}
CONTINUE

CALL TRANSF (DsMsNs IRCT)
IROT=IR0OT1

RETURN

END

1)*W(Klel
1)*9W{KlsI

W{K »1156)+CC{
(Klsl

w
w
W{Klsl
w

v»I16)+CCHL 3,11)%#(KioIl+6)
2I11sS)+CC( 7-,11)*W(K1ls11e5)
’6;‘CC(13¢II)*“K +I »5)
S

2I15)+CCH(
23)}+CC(1
»1)#CC(1
°»1)+CC(16
2116)4+CC( 4
»11,5)+CC( 8,
+3)-CC(11,
21)~CCl 13,
21)}-CC(1S,
23)+CC( 2,
+3¥+CCH{ 4,
21)+CC( 6.
+1)+CC( 8.
+6)-CC(13,
s5)

3.

7'

2
ol G
»
 d
+4)
»2)
»2)
s4)
»4)
+2)

»2)
»S)

Pt g D Dt e P P Py P Dt g Pug o Py P
e ]
- e o St e Wy S Rl Nt Nt Nt e
IEEEEERE R REE R EE R
AEEERNEEEE T XL EE
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4) Programs Related to Radiologic Systems

SUBROUTINE XRAY (ASsMSy NS, A0 MC+NOsKOWDyAIMIsNI; ADIM)

JOSEP M. COSTA 1975 0521 1542
THIS SUBROUTINE SIMULATES AN X=RAY SYSTEM, GIVEN A FOCAL SPOT
INTENSITY DISTRIBUTION, AS(MS¢AS)s AND A 3C OBJECT DEFINED BY THE
ATTENUAT ION FACTORS, AC{MG+NOsKO)s THIS ROUTINE DETERMINES
THE INTENSITY DISTRIBUTION ON THE FILM PLANE, AI(MIsNI).

AS — 2D ARRAY CONTAINING THE INTENSITY DISTRIBUTION OF THE FOCAL

SPOT (IF THE FOCAL SPGT IS NOT RECTANGULAR THE ELEMENTS OF AS

NOT BELCNGING TO THE FOCAL SPQT SHOULD BE SET TGO ZERO)s

MS = FIRST DIMENSION OF AS.

NS - SECOND DINMENSICN OF AS.

AQ = 3D ARRAY CONTAINING THE ATTENUATICN FACTOR

DISTRIBUTION IN THE OBJECT. THE THIRD ARGUMENT OF THE ARRAY

INDICATES THE LAYER NUMBER IN THE OBJECT (THESE LAYERS ARE

ASSUMED TO' BE PARALLEL TO THE FILM PLANE).

FIRST DIMENSION OF AOQ.

SECOND DIMENSION CF AQS

THIRD DIMENSICN OF AO AND LENGTH CF ARRAY D,

1D ARRAY OF LENGTH KO CONTAINING THE DISTANCES FROM THE FILM

PLANE TC THE LAYERS.

2D ARRAY WwHICH CN OUTPUT WILL CONTAIN THE INTENSITY

DISTRIBUTION OVER THE FILM PLANE, UNLESS NI=1, SEE NOTE BELOW,

FIRST DIMENSION QOF Ale.

SECOND DIMENSION OF Al

NOTE: IF(NI.EQel) THE FILM PLANE WILL BE DIVIDED IN A GRID
CGF SIZE MIx*MI AND THE INTENSITY DISTRIBUTION WILL BE
WRITTEN IN AN EXTERNAL DEVICEs UNIT=1l, IN UNFORMATTED
BLOCKS OF LENGTH Ml

ADIM —= 1D ARRAY CF LENGTH 8 CONTAINING THE PHYSICAL DIMENSIONS OF

THE X~RAY SYSTEM., ANY LENGTH UNIT IS VALID BUT IT MUST BE

THE SAME FQOR -ALL DIMENEIONS,.

> x
4 ]
[ I ]

r4
"
(]

ADIM(I) - FOCAL SPCT TO FILM DISTANCE.
DIM(2) — X-LENGTH OF THE FOCAL SPOT.
ADIM(3) = Y=-LENGTH CF THE FOCAL SPGT.
DIM{4) = X=-LENGTYH CF THE GBJECT.
ADIM(S) = Y=LENGTH GF T#E OBJECT.
ADIN(é! - X~LENGTH GF THE FJ]LM PLANESs
DIM{7?) -~ Y=-LENGTH CF THE FILM PLANE,
DIM(8) = ANGLE IN RADIANS BETWEEN THE PLAN: OF THE F3CAL

SPOT AND THE FILM PLANE.
NeBa: ALL ARRAYS ARE ASSUMED TO BE CENTERED WwITH RESPECT TO THE
CENTRE RAY.

DIMENSION AS(MSsNS)», AQ(MC,NOsKO)s D{KO)e AI{MI,NI), ADIM(8)

00 ADAANNAANANAONANANANAANANNNNNNNNNNANNNANAAND
z
4

INITIALIZATION
DATA IPRINT/6/, SMALL N/ZFFFFFFF/2 GREATP/ZTFFFFFFF/s IUNLITZ1/
AMO=FLOAT (MC)
NC=FLOAT (NQ)
ANS=FLOAT(NS)

MIP=M]
NIP=NI ~

IF(NI«NE«1) GG TO 5
REWIND IUNIT
NIP=MI

S XIS=ADIM(6)/FLCAT(MIP)
YIS=ADIM({?7) /FLOAT(NIP)
X00={ADIM(6)=ADIM(4)) *%0.5
YOO=(ADIM(7)Y=ADIM(S))%x0.5
XOS=ADIM{4)/7AMO
YOS=ADIM(5) /ANG

C =COS{ADIM(&))

S =SIN(ADIM(8))
XSO0z=(ADIM(6)=ADIM(2))%0.5
YSO={ACIM(7)=ADIM(3)=C)*0.5
Z50=ADIM(1)-ACIM{(3)%5S%0.5
XSS=ADIM(2)/FLOAT(MS)
YSS=ADIM(3)%C/ANS
ZSS=ADIM(3) *S/ANS
AST=0,.0

D2 5 I=1,MS

6 AST=AST+AS(I, J)
WRITZ (IPRINT,. #) AST
AST=1.0/457
AIMAX=SMALLN
AIMIN=GRZATP

C
= TwC LCCPS OVER FILM PLANE

DO 930 J=1,NIRP
YI2=YIS*xFLQOAT(J)
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YIll=yYI2=-YIS
JMIN=MINO(JHNE)
DO 900 I=1,MIP
X12=X1S*FLOAT(I)
XIl=X12=-X1IS
AIP=0,0

TwO LOOPS QOVER FOCAL SPOT PLANE
DO 800 L=1,NS
AL=FLOATIL)
YS2=YS0+YSS*AL
YS1=YS2~YSS
ZSC=ZS0+ZSS*AL*0.5

DO 800 K=1.MS
XS2=XS0+XSSHFLOAT(K)
XS1=X52=-XSS
COEFFT=1.0

ONE LOOP OVER LAYERS IN OBJECT
DO 700 KV=1.KGC

DETERMINE THE INTERSECTION OF THE X~RAY BEAM WITH THE KV!TH LAYER.
X02=({XI2+D(KV)I*(XS2~-X12)/ZSC-X00) /X0S
IF(X02.LE«0.0) GO TO 700
Y02=(YI2+D(KV)*(YS2~-YI12)/Z2SC~-YQ0) /YOS
IF(YO2.LE«D.0) GO TC 700
X01=(XI1+D(KV)*(XS1-XI1)/7ZSC~-XQ0)/X0S
IF(X01.GE-AMD) GO TQO 700
YO1=(YI1+D(KV)}*{YS1-Y11)/ZSC-YQ0) /YOS
IF(YO1aGEW-ANQ) GO TO 700

DETERMINE THE AREA OF THE CROSS SECTION.
AREA= (XJ2«XC1)*(YC2~-Y01l)

DETERMINE THE AREA wHICH LIES CQUTSIDE THE OBJECT.
COEFF=040
IF(X01eGE+0+0) GO TO 51
COEFF==X01*(YC2-YO1)
X01=0.0

€1 IF(X02.LE.A¥D) GO TO S2
CQEFF= COEFF+(XOZ—AMO)*(YOZ-YOI)

. X02=AMO

S2 IF(Y01aGE«Qa0) GO TO 53
COEFF=COEFF=YQO1 *({ X02=-X01)
YOl1=0e0

€3 IFIYJ2.LE.ANO) GO TO 54
COSFF=COEFF+(Y02—-ANO) *( Xx02-X01)
¥Y02=ANO

DETERMINE THE ATTENUATION CF THE BEAM INSIDE THE OBJECT.
€4 IXOI=INTI(X01)+1
IX02=INT(X02)
JYOQ1=INT(YO1)+1
JYO2=INT(YD2)
XP=X01
YP=Y01
IF(IXJ2.LT.IXx01) GO TO 125
IF(JYD2.,LT.JYOl) GO TO 100
DO 90 II=IX01IXx02 -
YP=YD1
XPRP=FLOAT{I1)
XPPMXP=XPP=XP
DD 60 JJ=JYC1l,J4Y02
YRP=FLOAT(JJ)
COEFF=COEFF+XPPMXPx(YPP=YP)3AQ (Il sJJsKV)
60 YF=YPP
S0 XF=XPP
XP=XJ1
100 YO2MYP=YQ2-YP
DC 120 II=1X01,IX02
XPP=FLGAT(II)
CCEFF=COEFF+( XPP=XP)xYG2MYP*AQ (11 ,JYC2+1,KV)
XP=XPP
IF{JYDO2.LTeJYCl) GO TO 200
YP=Y3J1
XG2MXP=x0D2=-XP
DC 130 JJ=4YCl,JYOD2
YRP=FLOAT(JJ}
COEFF=COEFF+XC2MXFx (YPP=YP) *AC(IXG2+1 +J JyKV}
150 YP=YPP
200 COEFF=COEFF4+({ XC2=-XP)x{YC2~YP)®AQ( IXC2+1 »JYC2+1,KV)

.
NN
ho

MULTIPLY THE ATTENUATICN FACTCR DUE TO EACH LAYER.
COEFFT=CTcFFT#CCLFF/AREA :
70C CONTINUE

ADC ALL THE ATTENUATED INTENSITIES FROM EACH ELEMENT COF THE FoSe
800 AIP=AIP+AS(K,L}I®CCEFFT
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(212

(212}

no

FRENGRMALIZE AND FIND THE MAXIMUM AND MINIMUM OF THE IMAGE
AIP=AIPX®XAST
AIMIN=AMINI (AIPsAIMIN)
AIMAX=AMAX1 {AIPyAIMAX]} -
900 AI(IsJMIN)=ALP

STORE THE RESULTS IN AUXILIARY STCRAGE IF NI=l,
IFINI «EQel} WRITE(IUNIT) AI
990 CONTINUE
IF{NI«EQei1) ENDFILE IUNIT

PRINT COMPLETICN MESSAGES
WRITE(IPRINT,»1000)

WRITE(IPRINT,1001) ADIM{2),ADIN{a),ADIN(6)+ADIMI3 ) ADIM(S),ADIM(7])
WRITE{IPRINT,1002) MS ML MIFPsNS,NCWNIP

WRITE(IPRINT,1003) XSSeXO0S»XISs¥SS:YOS»YIS

WRITE(IPRINT,1004) ADIM(1),ADIN(B)sKO

WRITE(IPRINT,1005) (I+0(1)+I=1,KQ)

WRITE(IPRINT,»1006) AIMAX,AIMIN

IF{NI<EQsel) WRITE(IPRINT,1007) IUNIT

WRITE(IPRINT,1008)

RETURN

c
1000 FORMAT(1H1+/977HOXRAY SIMULATICN COMPLETED, THE CHARACTERISTICS OF

DOODANOOOONNDONNND

(218] (2]

Nno 0no

-~ THE SYSTEM ARE AS FOLLCWS?® s/s1H—sT43,10HFOCAL SPOT+T62+6HOBJIECT,
= T79e4HFILMs/ s 1H+,T43:1001H_)sTE24E{1H_),T79 s4(1H_))
11H DIMENSTONS,T27slH]| s/

1001 FORMAT{1HCG»T27s3H| XeT42+:3(G1%e7+3X )/
- I1H 3T27+3H YsT42:3(G14.7»,3X ))

1002 FORMATI1HOsT27+3H]| X»sT42:3(154+12X)97»18H NUMBER OF SAMPLES,
- T27slH{e/s1H osT27:34] YsT42:2(15,12X))

1003 FURMAT(1H0.T27.3H; Xy T42,3(G14.7,3X )47:19H SAMPLING INTERVALS,
- T27s1H]sZelH s T27:3H} YsT42:32(G147,3X ))

ig04 FORMAT(ZBHOFOCAL SPCT TO FILM CISTANCEsTa2,Gl4eTe/

33HOANGLE OF FOCAL SFOT (IN RADIANS) sT42+G14e70/>
27HONUMBER OF LAYERS IN OBJECTTS59414)
100S FDRMAT(ZAHOOBJECT TO FILM DISTANCE»T1:255{T34,13,759sG14.7s/9"+%,

- T27+7H] LAYERs /5 1H0))
1006 FORMAT(1IH ,T27+s7H] AIMAX:T7E sGl4e71/+16H INTENSITY RANGE,
- T27c1H|s/elH s T27s7H| AIMIN,T76 ,G14.7)

1007 FORMAT(49H~-THE SIMULATED RADICGRAPH HAS BEEN STCRED IN UNIT,I14)
1008 EORMAT(XHl)
ND

SUBROUTINE INVFHL (UeVsXsYsNpHL)
JeMs COSTA 1975 1229 1203

THIS SUBROUTINE CALCULATES THE TRANSFER FUNCTION OF AN INVERSE FILTER

w]ITH HARD=-LIMITED MAGNITUDE RESPCNSE.

ThHE DFT COEFFIQIENTS ARE USED TO DESCRIBE THE TRANSFER FUNCTICNS QF

THE SYSTEM AND AND THE INVERSE FILTER. THE DFT COEFFICIENTS ARE

STORED IN THE ARRAYS Us Ve X» AND Y.

ThE SUBRDUTINE PARAMETERS ARE AS FCLLG®S.

REAL PART CF THE TRANSFZR FUNCTICN OF THE INVERSE FILTER.

IMAGINARY PART CF ThE TRANSFzR FUNCTION OF THE INVERSE FILTERS

REAL PART OF THE TRANSFER FUNCTICN CF THE GIVEN FILTZR.

IMAGINARY PART CF TKHE TRANSFER FUNCTION OF THE GIVEN FILTERS

NUMBER OF ELEMENRTS IN THE ARRAYS Xs Yy Uy AND Ve

LEVEL OF HARD-LIMITING FOR THE MAGNITUDE RESPONSE OF THE

Be THE TRANSFORMAT ION MAY BE DONE IN FLACE IF IN THE MAIN PROGRAM
THE ARRAYS U AND ¥ ARE EQUIVALENT TC THE ARRAYS X AND Y.
RESPECTIVELY.

DIMENSION U(NIsVINY s XI{N},Y(N)
CHL=1 0/ ( HL*HL)

DO 6 I=1sN
C=x(I)=X(I)+Y(I)*Y(I}.
IF(CeNEO.0) GO TO 3

ZITIZ<AX<SC
«

THE SQUARE MAGNITUDE IS ZERG
U(I)=HL
V(I)=0.0
GO TO 6

CALCULATE THE HARD-~LIMITING FACTOR [F THE MAGNITUDE RKRESPGNSE OF THE
INVERSE FILTER IS GREATEZR TFAN HL,
3 IF(CalLT.CHL) C=3QRT(C)/HL

DETERMINE THE REAL AND INAGINARY PART OF ThHZ INVERSE FILTER.
U(ly= x(I1)/C
ViIl)==-Y(I)/C
6 CONTINUE
RETURN
END
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5) Utility Programs

TH
TH
1.
TH
aN
X
M
N
MX

LT

W

SUBROUTINE PICPRT (X ¢MaNeMX,LI)

JOSEP M, CCSTA 1975 0610 1456
IS SUBRCUTINE PRODJCES A PICTORIAL OUTPUT ON A& LINE PRINTER.
£ PICTURE 1S DZFINED BY A 2D ARRAY OF FREAL NUMBERS BETWEEN 0.0 AND
3 REIPRESENTING THZ INTENSITY VALUES, IF A PIXEL HAS A VALUEZE LESS
AN ZZR0 NOTHING IS PRINTED AND IF A PIXEL HAS A VALUE GREATER THAN
£ THT MAXIMUM DENSITY IS PRINTED. )
2D APRAY OF DIMENSIUONS M BY N CCONTAINING THE INTENSITY VALUES.
FIRST DIMENSION OF X
SECOND DIMENSION 0OF X (LENGTH OF PICTURE TC BE PRINTED)
WIDTH OF PICTURE TO BE PRINTED.
I7 {(MX.LT«0) A NEGATIVE OF THE PICTURE IS5 PRINTYED.
NUMBER OF LINES PRINTED PER INCH.
THE X=AXIS (FIRST SUBSCRIPT OF ARRAY X) GCES FROM THE LEFT TO
THZ RIGHT OF THE PAGE.
THE Y-AXIS (SECOND SUBSCRIPT OF ARRAY X) GLDES FROM THE BOTTOM
TO THE TOP OF THE PAGE(S).
IF {(LI.LT:0) THE Y-AX[S GCES FROM THE TD>® TO THE BOTTCOM OF THE
PAGE{(S).

[ |

DIMENSION X {M,N)

LOGICAL FLIP,NEG

DATA A1/v075/41A2/e185/4A3/ 4,235/ 0A8/ 27/ 25/ 231/ A6/ e35/+AT7/ 4385/,
=AB/ . 01/s29/ 2435/ 3A10/a89/3A11/:545/3A12/7e58/:A13/.62/4A14/.6557,
~A1S/e73/70A16/7e82/0A17/e87/4A18/e91/3A19/.957/,A20/.9857
INTEGER PMAX(8)/9917:25+33+42»50+158+667

LOGICAL*1 P1(133),P2{132),P3{132)+P4(132),>5(132).,P6(132),
=P7(132),P8(132),P18(1C57),P17{025)sP16(793),P15(661),P14(529),
=P13(337)sP12(265)sLCAPRG,,DUMMY(15),
=CO/Y /e Cl/ =2/, C2/'=8/4C3/ '+ /3CA/* )P/ sCB/ %15 /sCO/YZY /4CT/ XV /s
=CB/VAY/4CO/ MY /4 C1G/Z 0"/ 4sCLL/°" " ¢/ 4C12/ 2427 eC13/HY/5CLla/7C1/,
=C15/°*B¥/,Cl&/*V?*/

CCMPLEX*16 CP{866):CBLANK/?® t7

COMMDM/P1 TO PS8/DUMMY ¢P14P2:sP3,P4,P5,P6+P7:P8
ECUIVALENCE(CP(1).,P1(2))

EQUIVALENCE (LCARRGsP1(1)sP18(1),P17(1)»P156(1),P15{(1),P141(1),
~P13{1).P12(1))

DATA NCOLPG/132/, NLINPG/6G/s NCARIN/LID/, NLININ/B/

L=l ABS({MX)

IF{L «GT +NCOLPG) L=NCOLPG

NEG=sFALSE .

IF(MXsLTe0) NEG=.TRUE

LCARRG=CS

IR=1ABS(LI)

IF(IR.EQs,0Q) IR=NLININ

FLIP=,FALSE.

IF(LI «LT«0) FLIP=.TRUE.

MAXP = 8

11=(NCOLPG~L)}/2

I1P1=11+#1

I2=L+11

N1=N*IR/NCARIN

IF (N1,.GE.NLINPG) GO TD &

J2=(NLINPG-N1)/2~-1

DO 3 J=1,J2

WRITE(6,6001) LCARRG

LCARRG=COQ

IF{I1.LE.0) GO TO 7

DO 6 K=1,9

CP{K}=CBLANK

P1(I1+1)=C3

P1{I2+2)=C3

WRITE(6,£001) PI1

LCARRG=CO

AN=FLOAT(N)

RI=FLOAT{NCARIN)/FLOAT(IR)

NIP1=N1+1

DO 900 JJ=1,N1

J=JJ

IE(FLIPY J=N1P1-JJ

I1PMAX = PMAX(MAXP)

DO 9 K=1, IPMAX

CRP{K) = CBLANK

MAXP = 1

Mp=1

Jl=N=(J=1)%NCARIN/IR

Jza2=J1-1

DJ=FLOAT{J1I-N)+FLOAT{JU~1)=*R]I

D0 600 I=I1F1,12

IP1=1+1

Z=X(1-11,41)
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IF (IRJNENCARIN) Z=Z4+{(X(I~T11,J02)=2)%0J
IF{NEG) 7=1.0-Z
I (Z.G7,410) GO TO 90
IF {Z.GT,-A5) GO 70 40
IF (Z.GT.A3) GO TO 20
IF {Z.GT.A2) GO TO 10
IF {Z.0T.A1) P1(IP1)}=C1
GO TO 600

10 PICIP1)=C2
GO TO 600

20 IF (Z.GT.A4) GO TO 320
P1{IP1)=C3
GO TO 600

30 PI(IP1)=Ca
GO TO 600

40 [F {Z.GT.AB8) GO TO 70
IF (Z.GT.A7) GO TO 650
IF (Z.GT.A6) GO TGO S0
P1(IP1)=C5
GO TO 600

50 Pi(IP1)=C6
GO TO 600

60 P1(IP1)=CT
GO TN 600

70 IF (Z.GT.A9) GO TO 80
P1{IP1)=C8
GO TO 600

a0 PI{IPI)=CO
GO TO 600

S0 P1(IP1)=C10
MP=2
IF {Z.GT»A16) GO TO 130
IF (Z.GT.A13) GO TO 120
IF (Z.GT.A11) GO TO 100
P2{l)=C1
GO TO 600

100 IF (Z.GT.A12) GO TO 110
p2{1)=C2
GO TO 600

110 P2(1)=C3

120 P2(1)=C3
Al4} GD TO 600

AlS5) GO TO 600
MP=5
PS{I)=C2
GO TO 600
130 MP=5
P2{1)=C7
P3(I)=Cl1
Pa(I)=C12
IF {Z.GT.A17) GO TO 140
PS5(1)=C1
GO TO 600
140 PS(I) =C13
IF(Z. GT. A19) GO TGO 160
MP=6 -
IF (Z.GT. Al8) GO TO 150
P6 (1) =Cla
GO TO 600
150 P6 (1) = C15
GO TO 600
160 P7(1) =C16
IF {Z.GT.A20) GO TO 170
Mp=7
GO TO 600
170 MP=8
P8 (1) =C8
600 MAXP=MAXO{MAXP  yMP)
GO TO { 6104620,530+580,6505,660+670+680) 0MAXP
610 WRITE (6,6001) P1
GO 70 <00
620 WRITE (6,6001) P12
GO Ta <00
630 WRITE (6,6001) P13
GO TO 200
640 WRITE {6,6001) P14
GO YO 900
650 WRITZ (6,6001) P15
GO TN 900
660 WRITE (6,6001) P16
GO TO 900
670 WRITE (6,6001) P17
GO TG 900
680 WRITE (6,86001) P18
900 LCARRG=CO




IF{IlalLS.0) GO TO 999
DO 206 K=1,9

905 CP{XK)I=CBLANK
P1{I11+1)=C3
P1{I2+2)=C3
WRITE(6,€001) P1

9399 RETURN

5001 FORMAT(133A1+/s("+2,132A1))

C
C
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END

SUBROUTINE ASCALE (AL ,IFNsAMAX,AMIM)
J.Me COSTA 1976 0102 1555
THIS SUBROUTINE FINDS THE MAXIMUM ANC MINIMUM OF THE ELEZMENTS OF AN
ARRAY AND/OR SCALES THISE ELEMENTS BETWEEMN 0.0 AND 1.0.
THE, SUBROUTINE PARAMETERS ARE AS FOLLOWS.
A - ARRAY TO BZ SCALED.
L = NUMBZR OF ELEMENTS IN A.
IFN - INPUT PARAMETER:
IF(IFNGT.0) THE MAXIMUM AND MINIMUM VALUES ARE OETERMINED
AND THE ELEMENTS CF THE ARFRAY ARE SCALED BETWEEZIN
0«0 AND 1.0
IFUIFN.,EQ.0) THE ELEMENTS OF THE ARRAY ARE SCALED ACCIRDING
TO THE VALUES OF AMAX AND AMIN SUPPLIED BY THE
CALLING PROGRAM,
IF(IFNJWLT,0) THE MAXIMUM AND MINIMUM VALUES ARE DETERMINED
BUT THE ARRAY IS NOT SCALED.
AMAX = MAXIMUM VALUE OF ARRAY A.
AMIN -~ MINIMUM VALUE OF ARRAY A.

DIMENSION A(L)

DETERMINE AMAX AND AMIN IF THEY ARE NCT SUPPLIED BY
THE CALLING PRGOGRAM
IF{IFN.EQ-0) GO TO 7
AMAX=A(1)
AMIN=AMAX
pD A& I=2,L
AMAX=AMAX1{A(]
AMIN=AMINICA(T
6 CCNTINUE
WRITE(6,56000) AMAX,AMIN

)+ AMAX)
) s AMIN)

6000 FORMAT('Ox*% IN SUBROUTINE ASCALE:I AMAX =%'3G16.7,° AND AMIN =°,

- G167t dXx%k¥)
IF(IFN.LE«Q) RETURN

SCALE THT ARRAY
7 D=1.,0/{AMAX-AMIN)
DO 9 I=1,L
9 A(IN={A{T)}=-AMINI*D
RETURN

END

SUBROUTINE DBS (D XsNsV,F)
JeMs CCSTA 1976 0103 1357

THIS SUBROUTINE TRANSFORMS AN ARRAY OF NON NEGATIVE REAL NUMBERS TGO
DECIBELS.
ThHE SUBRCUTINE PARAMETERS ARE AS FOLLOWS. . -
- ARRAY OF LENGTH N THAT 0ON OUTPUT w%ILL CONTAIN THE DATA IM DB'S.
ARRAY OF LENGTH N CONTAIMING THE INPUT DATA.
NUMBER OF DATA PCINTS IN D AND X.
HARD-LIMITING PARAMETER FOR VALUSZS LESS THAM VY,
IF v IS LE3S THAN OR EQUAL TO ZERC THE SUBROUTINE USES INSTEAD
THE LEAST POSITIVE NUMBER IN THE ARRAY.
F - INPUT COEFFICIENT, SHOULD BE EQUAL TO 10.C FCR POWER RATIOS OR

SQUAL TO 20.0 FCR VOLTAGE JOR CURRENT RATIOSe
N,Bs THE TRANSFORMATION MAY BE DONE IN PLACE IF THE ARRAYS D AMD X

ARE ENQUIVALENT IN THE CALLING PROGRAM,

[

<2ZX0O

DIMENSTION D{N). X(N)
DATA GREAT/Z7FFFFFFF/y IPRINT/6/

INITIALTIZATIGON
YALO=V
NBV =0
IF{VALO+GT.0.0) GO TOD 4
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[als]

an

nNno

DNOO

2]

[21als]

DETERMINET THE
VALO=GREAT
DO 3 I=1,N
IF(X{(1}.GT40.0)
3 CCNTINUE

LEAST POSITIVE NUMBER IN THE ARRAY

VALO=AMINI(VALO,X{1I))

TRANSFORM TD DE*S

4 VALODO=F*ALUG10(VALO)
DO &6 I=14M
A=X(1}
IF{AGE.VALO) GO TO S
NBV=NBV+1
D(I)=vVALODB
GO TOQ 6

S D(IY=F*ALOGI10(A)

&6 CONTINUE

END COF THE TRANSFORMATION,
WRITE(IPRINT,9) NBV,VALO
9 FORMAT (*O#**x IN SUBROUT INE DBSI*, 164
- eGlEa7y? %x%0)
"RETURN

END

SUBROUTINE CMAG2 {XsMTsNT, ISN)
JoM, COSTA
THIS SUSROUTINE DETEZERMINES THE SQUARED MAGNITUDE OF THE

TRANSFORM GIVEN 8Y FFT2R.

DIMENSION X{MTsNT)
IF{IABS(ISN).GT.1) GO TO 20

10 2 JIEX( Ty ) +X(T+1Jd)2X(1+1+J)

NEURN
20 DO 30 J=1sNT,2
DO 30 I=1.MT
X(Ted/241)=XUT5d)%XC(T,,J)+#X{TIsJ+1)RkX{T,J+1)
RETURN
END

30

SUBROUTINE COMPLT (X +MTHNT, ISN)

J«Me COSTA

A COMPLETION MESSAGE WwILL BE PRINTED
DATA VALUES ARE LESS THAN

1976 0327 1500

FOURIER

1976 0327 1500

THIS SUBROUTINE COMPLETES THE ARRAY GIVEN B8Y C¥AG2 BY SYMMETFIES.

DIMENSION X{MT.NT)
IF{IABS{ISN}«GT:.1) GO TGO 50

M2={MT-2) /2

DO 10 I=2,M2
X(MT=14+1)=X{1I,1)
X{(MT=1,1)=0.0
X{MT,1)=0.0
NP2=NT+2

DO 30 J3=2«N7
X(MT=1.2J)=0.0
A(MT,»J)=0.0

10

30
RETURN

SO0 N2=(NT=-2)/2

DO 60 J=2,N2

X{1 NT=J)=X{(1,J3)

ME2=MT+2

DO 90 J=2,N2

JP=NT~J

DO 30 I=2.MT

XIMP2=1,JP)=X({1,J)

RETURN

ENMD

60

90

[\
U
—
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SUBROUTINE CAMOVE {XsMsN.MX)

JOSEP M,
CF A
FOURISER TRANSFORM,

THIS SUBRCUTINE REARPRANMGES THE SLEMENTS
ASSUMPTIONS 0OF THZ TwWGO-DIMENSICMAL FAST
THE COQORDIMATE AXESs ASSUMED CENTPED
THE CORNZR WITH THZ LCWEST INDICES.

Ne. Be. M AND N MUST BE DIVISIELE BY 2.

DIMEINSION X{M,N)
MBY2=MX/2
NBY2=N/2

DO 6 J=1,NBY2
JP=N3Y2+J

DD 6 I=1,MBY2
IP=MBY2+1
T=X(15J)

SUBROUTINE CTDW2 (XM, NysMX)

MULTIPLIES A GIVEN MATRIX
(IN PLACE)

THIS SUSROUTINE
COSINE TAPER DATA WINDOW

DIMENSION X(MsN)
DATA PI/3.141593/»
IW=MX/1IR .
AIW=FLOAT(IW)
L=N+1
00 6 J=1,1w
CTDW=005+045%COS(PIX (1 +FLOAT(J)/AIW))
KP=L-3
DO & I=1,MX
X{I s J)=CTRHFX (15 J)

6 X(I+KP)=CTDW*X(TIsKP)
Iw=N/IR
AlW=FLOAT(IW)
L=MX+1
DO 9 I=1,]1¥
CTOW=0.5+0.5*%COS(PIi*(1+FLLOAT(I)/AIW))

IR/10/7

KP=L~-1
DO 9 J=1,N
X(1.5J)=CTDWXX(I,+J)

9 X(KPR+J)=CTDWxX{KP,J)
RETURN
END

SUBROUTINE TRANSF (ZsM,N,IC)

JOSEP M,
THIS SUBROUTIME IMPLEMENTS ALL LINEAR TRANSFDIMATICNS
& SUCH POSSIELE TRANSFORMATIONS
OF A FINITE GROUP.

SQUARE MATRIX ONTO ITSZLF. THEPE ARE

AND THEY HAVE THE ALGESRAIC STRUCTURE

THE TRANSFORMATIONS ARZ DONE IN PLACE.

Z = MATRIX 7O BE TRANSFORMED.

M = FIRST DIMENSION OF Z.

N = SECOND TIMENSION 0F Z,
N MUST 92 LESS THAM OR EQUAL TC M,
THE SQUARE MATRIX MAY BE A SUBMATRIX
MATRIX IN THE MAIN PROGRAM, IN WHICH
VDPPER LEFT HAND CORMNER OF THE SGUARE
SUBROUTINE,

IC - INPUT PARAMETER WHICH DETZRMIMES THE

=0 IDENTITY

=1 ROTATE BY 90 DEGRZES (CLCCKWISE)
=2 ROTATE BY 180 DEGREES (CLCCKWISE)
=3 ROTATE BY 270 DEGREES (CLOCKWISE)
=4 VEXITICAL MIRROR IMAGE

=5 TRAMNSPCSE

=6 HORIZONTAL MIRROR IMAGE

=7 TRANSPOSE

[ne]
LN
[N

FITHRIN TRE

ORDER OF SQUARE MATRIX

CCSTA 1975 1106
MATRIX TO MEET THE

1328

MATRIXs ARE MOVID TO

JeM, COSTA 1976 0327 1500
BY A TWO-DIMENSIOMNAL

COSTA 19758 0611

1246
WHICH :

MAP A

TO BE TRANSFORHED,
OF A LAFRGER RECTANGULAR
CASE THE ADDRESS OF THE
MATRIX IS PASSED TO THE

TRANSFCORMATION

WITH RESPECT TO THE SECONTARY DI AGONAL .




DIMENSION Z({MesN)

C

C INITIALIZATION
IRQT=MOD{I1ABS{IC), 8)
NP 1=N+1{
MED=N/2

C

C IDENTITY
IF{IROT.EQeQ +0OR. N.EQ.1) RETURN
GO TO (90:180,2705400,5005,600,700),s IROT

C
C RDTATE 8Y 90 DEGREES
90 DO 95 I=1+MED
IP=NP1l=-]
JND=[P=-1
DO 95 J=1sJND
JP=NP1=-J
T=Z(1:J)
Z(1+J)=Z(JP,»1)
Z{JP»1)=Z(1F,.JP)
ZLIPR,,JP)Y=Z(J>1IP)
S5 Z(JsIP)=T
.RETURN

C
¢ ROTATE BY 180 CEGREES
180 DO 185 I=1,MED
IP=NP1=I
JND=1IP=~1
DO 185 J=1,JND

185

Cc ROTATE BY 270 DEGREES
270 DO 275 I=1,MED
IP=NP1=~]
JMND=1P=-]
D0 275 J=1,JND

275

VERT ICAL MIPROR IMAGE
400 DD 405 J=1,MED
DO 405 [=1.N
JP=NP1~)
T=Z(1,J)
Z(T14J)=Z{1,JP)
405 Z{1.,JP)=T
RETURN

TRANSPDSE

S00 DD 505 J=2.N-
JM1=J-1
DO S0S I=1,Jul
T=Z{1I,J)
Z{13)=2(J» 1)

505 Z{J,13=T
RETURN

no

a0

C HCRIZONTAL MIRROR IMAGE
600 DO 605 I=1,MED
DO 605 J=1,N
IP=NP1=1{
T=Z{1+d)
ZU1 4 J)=Z(1IPsJ)
605 Z(IP,yJ)=T
RETURN

¢ TRANSPOSS WITH RTSPECT TO THE SECONDARY CIAGONAL
700 JNO=N-1
DO 705 J=1, JND
JP=NP1=J
IND=JP=-1
00 7¢3 I=1,IND
IP=NP1~1
T=Z(14+J)
Z{T1+ D) =ZLIR,IP)
705 Z(IPWJP)=T
RETURN
END

~N)
w
w




Appendix D

THE COMPUTER SYSTEM

Two digital computer systems were utilized in this work for image
digitization, processing and reconstruction, filter design, contour and
perspective plots, etc.

Most of the computing was done off-line with an IBM SYSTEM/370
MODEL 165-11 (OS/MVT with HASP) with Gould and Calcomp plotters. These
are powerful resources but cumbersome to use in image processing because
of the lack of interaction.

The digitization and reconstruction of images was done in a modest
image processing facility mounted around a DEC PDP-11 minicomputer in
the CRF laboratofies. A diagram of this facility is shown in Figure D.1.

Magnetic tape (9 track, 800 BPI) was used as the communication
medium between the PDP-11 and the IBM 370. The picture elements are
represented by integer numbers between O and 63 and stored as INTEGER*Z
values using A2 format. The records in the tape are of undefined length
and the block-size is 512 bytes. The first block contains the number of
samples in the image.

We developed some programs for interactive image enhancement. These
include determination cf the picture histogram, cummulative histogram
mapping (for histogram equalization) and piecewise linear intensity
mappings (for stretching certain gray levels).

In the remainder of this appendix we give a brief description of
the CVI equipment which is used for the digitization and display of

images. For more detailed information the reader is referred to the
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TV CAMERA
or other
video source

D/A  converter

or other generator
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AUXILIARY
STORAGE
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260 L ——~\COMPUTER
compressor (DEC PDP-11)
J
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-— 261A
'\ video
expander
TELEVISION
MONITOR

CRT

display

Figure D.1. A computer system for interactive image processing.
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equipment manuals.

Video Compressor

The CVI Model 260 Video Compressor is a device that can extract
pictorial information from a standard television video signal at a rate
compatible with the data rates of computers anc other digital processing
equipment. This is acccmplished by taking one sample from each television
scan line; so that the sampling rate is nearly 16,000 samples/second which
gives an equivalent analog bandwidth of approximately 8 kHz.

As a result of the sampling technique used in the Model 260, the
output data comes from a vertical sampling line that scans from the top to
the bottom of the original television raster. This sampling line is
normally moved from left to right accross the raster to complete a single
frame, but positioning cf the sample line can be arbitrary when using the
external H-scan capability 6f the instrument.

The Model 260 incorporates a 'real time'" video output which allows
the user to monitor the sampling process. Location of the sampling line
is displayed on a television monitor as a series of superimposed white
dots, while the waveform produced by the sampled data is also displayed

vertically at the left-hand side of the screen.

Video Expander

The CVI Model 261A Video Expander is a device that accepts digitally
encoded pictorial data and stores it on a video disk for display on a
standard television monitor. The buildup of the image may be continuously
observed, and there is no fadeout or image degradation with time in the

resulting display.




The Model 261A accepts parallel six-bit binary data by columns. The
input data for one vertical column of picture elements (one picture
element per scan line in the final television raster) are read into a
buffer storage register into the 261A. This column of data is then
recorded on the magnetic disk in the proper field (as selected by the
computer) and at the horizontal position in the raster determined by
an external position signal. Continuation of this process allows the
construction of an entire, interlaced television raster.

Conventional television uses a 2:1 interlaced séanning format.
This means that each television frame (a complete picture consisting
of 525 scan lines written in 1/30 second) is made up of two fields
(each containing 262% scan lines written in 1/60 second) displaced
vertically.so that the scan lines interlace. Interlacing is done to
minimize flicker in the displayed picture. The number of active lines
in each field is 240.

In using the 261A, it is important that the data be interlaced for
a proper display. We have chosen to artificially generate the second
field by linear interpolating the first. This interpolation is done in
real time just before displaying the image, so that redundant digital
data do not have to be stored on tape.

The resolution of the system is limited in the vertical direction
by the number of active scan lines (240+240=480) and in the horizontal
direction by the packing density of the magnetic disk. In the 261A this
density limitation requires the use of 200 or fewer points per line;
although in practice this horizontal limitation can be exceeded slightly

(e.g. to 256 points per line).
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