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Digital Tomographic Filters
for Radiographs

JOSIf M. COSTA Bell-Northern Research, Ltd., Ottawa, Ontario, Canada

1. INTRODUCTION

There are imaging technologies, such as those using x rays, in which the
image consists of the superposition of many other images. This chapter
considers the problem of conventional radiology, where a three-dimensional
object is projected onto a two-dimensional film by means of x rays. If we
think of the object as composed of a stack of layers, the images of these
layers are all superimposed on the film, This is illustrated in Fig. 1,
where the object has two layers. In conventional radiology, x rays are
emitted from the focal spot of an x-ray tube in the form of a divergent beam
(refer to Fig, 1), and traverse a three-dimensional body where they are
attenuated in intensity due to the absorption in that body. Lack of imaging
devices for x rays, such as lenses and mirrors, force the use of a shadow-
casting geometry. A two-dimensional image, containing information from
all depths in the object, is projected by these attenuated x rays. The x-ray
image is converted into a light image by an intensifying screen in contact
with the radiographic film (a screen-film combination), where the image is
registered to form the radiograph. The relative position of the structures
and objects that are in the body, whose images are all superimposed on the
film, and the depth of those structures are not readily seen in the radiograph.
Hence it would be very useful to have means of obtaining clear images of
each layer in the body. This is important in diagnostic medicine for deter-
mining more precisely the nature and location of the lesions in the body.
The objective of this chapter is to provide a brief overview of some
of the techniques that have been proposed to overcome this problem of
three-dimensional imaging with x rays and to discuss in more detail how
multidimensional digital filtering techniques could be used to improve the
three-dimensional information in conventional radiographs. In particular,
a new technique referred to as tomographic filtering is introduced and
discussed.
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The three-dimensiona] imaging techniques by means of X rays are
summarized in Sec, 2 and the development of the tomographic filtering
technique, including a review of conventional radiology, appears in Sec. 3.
A comparative performance assessment of tomographic filtering with con-

some conclusions and suggestions for further research are given in Sec. 5,

2. THREE—DIMENSIONAL IMAGING TECHNIQUES
WITH X RAYS

Four techniques are briefly reviewed in this section: standard tomography
(Sec. 2.1), computerized tomography (Sec. 2.2), coded X~ray sources

(Sec, 2.3), and tomographic filtering (Sec. 2.4). Both standard tomography
and computerized tomography are widely used in hospitals,

2.1. Standard Tomography

X rays were discovered in 1895 and as early as 1916 Special radiographic

techniques, based on moving x-ray tubes, were invented to obtain clear
images of certain parts of a body by blurring redundant images of other
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parts [1]. These techniques have been reinvented, modified, and improved
over the years, and have received different names, such as laminagraphy,
planigraphy, stratigraphy, body-section radiography, tomography, stereo-
radiography, classical motion tomography, and others [1-4]. Here they
will be referred to as standard tomography.

Standard tomographic techniques produce a tomogram by moving a
pointlike x-ray source and the recording film in a coupled manner, so that
during the exposure the parts of the object lying in one specific plane parallel
to the film plane are always projected on the same place on the film f1].
The x-ray shadows of the other parts of the object will move in relation to
the film. Thus a layer of finite thickness at a predefined depth of the body
is imaged sharply, whereas structures on both sides of this lay« -
blurred. The layer whose image is in focus is referred to as ... . ...e of
cut or tomographic layer.

A standard tomogram is actually the result of multiple radiographic
exposures from different positions on a single film as the x-ray tube and
film move. If multiple radiographic exposures (typically 8 to 20) were
obtained on separate films, each at a different distance for a different tube
position, films could be superimposed optically or electronicall: :o »ring
into focus any plane [5,4, pp. 368-371). This method has been relcrred to
as tomosynthesis [6,7].

Standard tomograms suffer from the noise due to overlaying and
underlaying layers, and attempts to eliminate it by removing defocus blur,
using both optical and digital signal processing techniques, have been re-
ported (e.g., [8-11]).

2.2, Computerized Tomography

Computerized tomography (CT) has been a major breakthrough in the devel-
opment of x-ray imaging techniques in the 1970s [12]. CT is based on using
multiple projections of a layer and a computer to reconstruct numerically
the distribution of absorption coefficients in that layer. Since the x-ray
beam is allowed to diverge in two dimensions only and solid-state detectors
in the CT scanner have finite size, these two aspects together define the
width of the layer. Additional collimation in front of the detectors reduces
the signal from scattered x rays, which would produce noise from outside
the plane. Thus the main advantages of CT over standard tomography are
that only information for a given layer is obtained, without any significant
noise from other layers, and that the information is obtained directly in
digital form. Reviews of CT methods have been done by Mersereau (13,14],
Robb [12], and others (e.g., [15,16]). Mersereau even proved that, in
theory, bandlimited functions of finite order can be reconstructed exactly
from a single projection. This is relevant because it would reduce e
patient dose considerably; however, no practical system to reconstruct
exactly three-dimensional information from a single projection is avail-
able yet.
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Techniques are being investigated to enable computerized tomography
to be carried out from a set of radiographs taken at different angles using
conventional radiography units [17]). Since these units are available in many
primary health care centers, they could be linked with a central medical
computing facility to provide cost-effective access to processing and expert
interpretation of the simulated CT images, for people in remote areas [17].

2.3. Coded X-Ray Sources

Another technique [18] uses a spatially modulated large-area x-ray source,
which produces a shadow image of the object, but in a coded form. Since
this type of source has an adequate high-frequency content, the coded image
contains fine detail information which can be recovered by decoding it.
Decoding is done using optical techniques and only a thin slice of the object
is in focus at one time, but other slices may be brought into focus by
changing lens positions in the reconstruction system. Alternatively, digital
techniques can also be used in the reconstruction. One advantage of coded
x-ray sources over standard tomography and CT is that no mechanical
motion is required [4, p. 471]. However, a disadvantage is that the noise
contributed by the out~of-focus planes during the reconstruction may be
quite complex. Coded-source imaging is an outgrowth of the coded-aperture
technique used in x-ray astronomy and nuclear imaging [19]. The spatially
modulated x-ray source can be constructed using etching techniques. Al-
though many shapes could be used, decoding is particularly simple if the pat-
tern is a Fresnel zone plate [18].

2.4, Tomographic Filtering

One of the remaining challenges in radiology is to improve the diagnostic
value of the billions of radiographs being produced in hospitals every year
using conventional radiography equipment. Enhancement and restoration
techniques have had limited practical application to the processing of radio-
graphs in the past [20]. This has probably been due more to the inconveni-
ence of their application (e.g., for digital processing the films must be
digitized and for optical processing the optical system has to be set up) than
to the limitations of the image processing techniques themselves. Ideally,
to make use of the existing radiology equipment in conjunction with digital
techniques, what would be needed is a new type of replacement cassette (the
box that contains the screen-film combination), containing solid-state
detectors which would produce a digital output directly. With the advent of
digital radiography and image archival and communication systems (e.g.,
[21-24]), digital image processing techniques will be applied much more
readily, because the images will already be digitized and the processing and
display will be facilitated. However, little work has been published on the
problem of recovering three-dimensional information from a single radio-
graph (see [13,14]). The tomographic filtering technique has recently been
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proposed to simulate standard tomography using conventional radiology sys-
tems and digital signal processing techniques [25]. This approach to tomo-
graphic restoration of radiographs uses the depth-dependent focal-spot blur
and it is described in detail in the rest of this chapter.

3. TOMOGRAPHIC FILTERS

Before any improvement of three-dimensional information in radiographs
can be attempted, it is necessary to study the characteristics of the image
formation process in radiology to find out what are the depth-dependent fea-
tures. To date, almost all theory of conventional radiography has dealt
with two-dimensional objects (see (4, p. 187]). The very nature of the
radiologic process, however, forces one to consider three-dimensional
objects in all imaging problems. The formation of the images of three-
dimensional objects using conventional radiology is reviewed here (Sec. 3.1)
and the concept of tomographic filtering is developed by establishing an
analogy with standard tomography (Sec. 3.2). The transfer functions are
examined (Sec. 3.3) and the performance of tomographic filtering is com-
pared with conventional radiology and standard tomography (Sec. 3.4).

3.1. Review of Radiological Imaging

The radiological system may be modeled by a sequence of transformations
intimately related in that the result of one forms the input to the next [26].
The degradations introduced at each stage of the radiological process have
been studied in great detail from the point of view of image quality (e.g.,
[26-31]). Here the characteristics of the image formation process are
briefly reviewed and modeled (a more in-depth review of the modeling of the
radiological process may be found in [25,32]. Basically, there are six
stages which may be modeled by transfer functions plus additive or multi-
plicative noise (see Fig. 1):

1. Electron gun: Electrons are generated by a heated filament
(cathode) in the x-ray tube, They are focused and accelerated at high speed
toward the target (anode) [33]. The angle formed by the target surface and
the direction of the center x ray is referred to as the target angle.

2. Focal spot: The region in the target where the x rays and the heat
are produced is called the focal spot. Many studies have been published
about the characteristics of focal spots in x-ray tubes (e.g., [34-39]. The
shape and size of focal spots have been determined as well as their modula-
tion transfer functions (MTFs) and impulse responses or point-spread func-
tions (PSFs), both theoretically and experimentally., The MTF of a focal
spot resembles a gaussian function [35,37,40]. It is usually double-peaked
and this introduces phase shifts in the image [41]. The randomness in the
generation of x rays (photons) has been referred to as quantum mottle
(see [31]).
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3. X-ray image formation: The interaction of x rays with matter
may be modeled by

I(z) = 1(0) exp [/
0

where I(z) is the intensity of a narrow x-ray beam from a point source as a
function of the distance z in the direction of propagation, and u([ ) is a total
attenuation coefficient in that direction. Since this interaction is the key to
the whole process of three-dimensional restoration, it is analyzed in more
detail below. Scattered radiation (see [42]) is considered as noise and it is
not too relevant here, because it does not contribute to differentiate among
layers.

4. Imaging system: The imaging system records the x-ray image
on the radiological film, by means of an intensifying screen which converts
the x~ray image into a light image (alternatively, electronic image intensi-
fiers can be used [(43]). In addition to the low-pass characteristics of the
frequency response of the imaging device, the main distortions in the re-
cording and display of images are due to random noise and nonlinearities
[44-48].

5. Restoration and enhancement: Although image processing opera-
tions do not yet exist in most systems of conventional radiology, as discussed
previously, they will become increasingly important as electronic acquisi-
tion and digital image archiving and retrieval are applied to medicine (see
[22-24,43]). In laboratory experiments, both restoration [49] and enhance-
ment [50] techniques have been applied to radiographs (e.g., [20,44,51-54]),
Several researchers have investigated the removal of penumbras in radio-
graphs using optical signal processing techniques [55~-57].

6. Pattern recognition process: The recognition of patterns by a
radiologist results in a diagnosis. In certain cases the pattern recognition
may be done with the aid of a computer (e.g., [58,59]).

An analysis of all these transformations has shown that the only effects
that could be useful for obtaining three-dimensional information are due to
the finite size of the focal spot and the diverging nature of the x-ray beam
[25]. Thus it is important to examine this more closely:

zZ

-uly af ] ¢}

Interaction of X Rays with Matter

X rays propagate in straight lines, This fact controls the size, shape,
and position on the radiographic film of the shadow or image of the various
structures of the object being exposed. Due to the diverging nature of the
x rays emitted by the focal spot, the image of the object is magnified. With
reference to Fig. 2, the magnification for the layer at depth z; is
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lo{Xg. ¥o! Focal Spot Plane

dy

Plane of the ith Layer

Film Plane

m, = 22 @)

which is a constant for each layer parallel to the film plane.

The x-ray image intensity distribution that reaches the imaging sys-
tem is a function of both the distribution of absorption coefficients in the
object and the x-ray intensity distribution in the focal spot. Let IO(xo,yO;
Xg,¥g) by the x-ray intensity emitted from the point (xg,y¢) in the focal spot
toward the point (x¢,y¢) in the film. The spatial distribution of absorption
coefficients in the object is denoted by uL([ ), which is defined along a line
L from (xy,¥q) to (X¢,¥5), for all possible L. The interaction between these
two functions or inputs to the system can then be modeled by the following

integral equation:
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I(xf’yf = //F:S IO(XO'yo;xf’yf) exP['/ NL(I) dl] de dyO 3)
.S. L

which is a generalization of (1) and is obtained by integrating over the re-
gion of the focal spot (denoted here by F.S.). This equation is valid with
any function I, and any three-dimensional object, in general.

From (3) it is clear that the radiologic process is linear with respect
to I0 and nonlinear with respect to the attenuation coefficients p. Neverthe-
less, an approximation can be made because the values of the linear attenua-
tion coefficients, or at least their variations from point to point, are small
and the exponential in (3) can be approximated by the linear terms of its
Taylor series expansion [60,61]. Once the system is linearized it can be
described by convolution integrals if the system is also space invariant.
However, the radiologic system is space variant for several reasons, such
as the divergent nature of the x-ray beam, the superposition of images of
the layers in the object, the lack of parallelism of the focal spot and film
planes, and the change of the x-ray intensity emitted from the focal spot
with direction.

Some solutions can be devised to make the space-variant problem
tractable [25,62]). The effect of the divergent nature of the x-ray beam when
it reaches the film is that the intensity has been distorted according to the
inverse square law. Since the consequences of this effect are deterministic,
the intensity in the image can be corrected with image processing algorithms.
Nevertheless, if the distances to be considered on the film plane are small,
this effect can be neglected, because in radiology the focal spot to film
distance is much greater than the focal spot size, say 1000:1. To deal with
the problem of the varying intensity 15(xg,¥q; X, Yy) of the x rays emitted
from the focal spot if they are different in each direction, the image could
be divided into small sections within which the impulse response could be
assumed to be constant {63]. If a mathematical relationship between inten-
sity and direction did exist, it would then be possible to correct the image
intensity automatically, as in the case of the inverse-square-law correction.
However, in practical applications the intensity is normally the same in all
directions, so that this correction is not necessary and the intensity becomes
Iy(xg,¥0), a function of (xq,yq) only. Iy(xg,y() is referred here to as the
exposure function. The lack of parallelism of the focal spot and the film also
makes the system space variant. The PSF has different size and shape
everywhere in the space, even within the same layer. A solution has been
proposed to correct for this problem [25], where a new image is calculated
by interpolation in a plane parallel to the focal spot, and thus it has space-
invariant properties. The equations of this transformation and the conditions
under which it should be applied are given in [25,32],

Ig(%g,¥0) can be determined by exposing an object with a known distri-
bution of absorption coefficients [64]. If the object is a pinhole, the system
impulse response h(xg,yf) is obtained. The size of the pinhole should be of
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no more than a few micrometers in diameter [65]. It can be shown [25]
that the exposure function Iy(xg,yq) is then given by

d d
d 2 d 2
I(x,Y)=h<—x.-—x,—y.-—y> 4)
070’70 d110d10d110d10

where (x,¥;0), d1, and dy determine the position of the pinhole, and d =

dy + dg (see Fig. 2). Once the exposure function is known, the problem con-
sists of recovering the spatial distribution of absorption coefficients based
on (3) and given a two-dimensional projection, the image I(x¢,ys). This is
not an easy task, as discussed previously. Conventional radiography masks
the depth information by giving a shadow-cast image of the body, which con-
tains hidden parts, blur due to the convolution with Iy, and noise. The pur-
pose of tomographic filtering is to improve the image of one layer with
respect to the others.

3.2, Tomographic Filtration Process

A tomographic filtration process (TFP) must produce a focusing effect simi-
lar to that of standard tomography, but using conventional radiology equip-
ment and with no moving parts. In a TFP, instead of moving the x-ray tube,
the finite size of the focal spot is used to advantage, and instead of moving
the film, a filter is used to process a conventional radiograph. To see that
a TFP is indeed analogous to a standard tomographic system in miniature,
as far as the tomographic layer is concerned, consider the following model.

A focal spot is composed of a finite ordering of point sources. Each
emitting source produces its own image at a slightly different point in the
image plane [66]. The shadows from all these point sources add up to form
the observed image; overlapping occurs throughout the entire image but will
be discernible only at the edges, where an intensity gradient is formed.
Since this system is linear we can apply superposition and make an equivalent
focal spot by moving a true point source of x rays over a region that includes
the real focal spot. With this model (3) is still valid, but F.S. would now
denote the movement of a point source. The movement of this point source
is analogous to the movement of an x-ray tube in standard tomography.
Since in conventional radiology the film does not move, the images of all the
layers are blurred. Therefore, in order to convert a radiograph into a
tomogram we will pass the radiographic image through a filter. Filters that
produce a selective deblurring on a conventional radiograph will be referred
to as tomographic filters. While tomographic filtering usually refers to the
filter or process that produces tomographic restoration, the term TFP
refers to the complete system, including the conventional radiology equip-
ment (see Fig. 3).

Since a typical size for the focal spot is of the order of 2 mm, while
the movement of an x-ray source in standard tomography is of the order of
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FIGURE 3 Concept of tomographic filtering.

500 mm, we infer that a TFP would be more comparable to zonography.
Zonography is essentially standard tomography using small displacements
of the x~ray source, of the order of a few millimeters [3, Chap. 14], [67,
68]. Other comparable narrow-angle tomographic techniques are stereo-
zongraphy, narrow-angle stratigraphy, and orthotomography (3, pp. 7-8,
300-311].

To derive the transfer function of a tomographic filter, the frequency-
domain equations of image formation in radiography had to be derived for
three-dimensional objects. To make the results more general and allow
comparisons between systems, the model of conventional radiology was
derived as a special case of standard tomography. This derivation was
motivated by that in [60]. Some of the constraints in [60] were removed,
namely, the linear movement of a constant-intensity x-ray source, while
others relevant to this application were added, namely, small displacements
of the x-ray source. Nevertheless, none of these constraints imply a lack
of generality in the derivation.

Consider the diagram of standard tomography shown in Fig. 4. The
reference coordinate systems whown in Fig. 4 are self-explanatory: X0:¥0
is the x-ray source plane, X,y is the plane of cut, x;,y; is any layer in the
object at depth z; (z; is its distance to the film plane), x¢,ys is the (moving)
film, and x,y is the (fixed) plane containing the film, In this model, the
x-ray point source (X) can move anywhere in the plane xg,yq parallel to the
film plane, and the intensity during this trajectory is given by the exposure
function Iy(xy,yg). In standard tomography the film also moves in syn-
chronism with the x-ray source to keep the desired plane of cut x;,y; in
focus, according to the following relationship:
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Py
Y=Y t¥e= - 5;)y0+yf

It is not possible to reproduce here all the details of the derivation,
which can be found in [25,32]. However, it is important to recap the ap-
proximations made:

1. The x-ray intensity from (xy,yq) to (x¢,¥5) is independent of (x¢,y¢) and
the position of the film.

2, If the displacements of the x-ray source are small compared to the
distance from the source to the plane of cut, a differential length along

Yo X-ray Source Plane
Dy
X T e
Plane of Cut
D Yi
2 z,
z. N\
i \
\\
\\
e Y

d .
4 Fifm Plane

FIGURE 4 Coordinates in standard tomography.
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the x-ray path (d[ ) can be replaced by the corresponding vertical dif-
ferential length (dz;).

3. Since the values of the linear attenuation coefficients, or at least their
variations from point to point, are small, the exponential representing
the attenuation of x rays through matter {recall (1) and (3)] can be ap-
proximated by the linear terms of its Taylor series expansion [60,61].

Considering these approximations and applying the Fourier transform
to (3), the final result is

Glt,of) =T8T - ‘/O‘ B 0L 02)F (€1,2) dz, (5)

where G(fy, ) is the Fourier transform of the resulting image on the film
I(x¢,¥); I is a constant; §(fy,f,) is the Dirac delta function; H; (fx,fy,zl) is
the transfer function of the 1th layer, at a distance zj from the film, as
given in (6) for standard tomography; and F (fx,f ,Zi) 1s the two- dlmensmnal
Fourier transform of the attenuation coefflclents u(x1 ,Vi»zi) at depth z;, as

given in (7):

z—d D z—d D z,-d D
Tt 2 = /f x, A= 2y
Xy i z1 Oz—D d zi-D2 d

-jen(f_x+ y) (6)
X e xy dx dy

d- z, d- z -j2‘n(fxx+fyy)
Fu(fx’fy’zi) =/fu< 3% 3 y,zi>e dx dy ()

where D; and Dy determine the position of the plane of cut, The transfer
function of the plane of cut [i.e., when zj = Dg in (6)] is a constant and its
impulse response is an impulse, as expected by intuition (see Fig. 4). This
results in a sharp image of the tomographic layer.

Equation (5) already suggests that the plane of cut can be changed by
filtering the image. Indeed, suppose that there is interest in the plane at a
depth z; = z;. Dividing both sides of (5) by HS (fx,fy z;), the new overall
transfer function for the layer at depth zt is a constant; thus this layer has
become the new plane of cut. The overall transfer function of the plane pre-
viously in focus (z; = Do) is now fH (fxs y,zt)}' . The overall transfer
for any other layer (i.e., at depth z;) is now
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ST
Hi (fx ’ fx ’ Zi)

H (0
Conventional radiology may now be considered as a special case of standard
tomography. To derive the equation of conventional radiology, consider a
radiologic system with focal spot intensity distribution Iy(xqg,y) and focal
spot to film distance d = Dy + Dp. The diagram in Fig. 4 still applies by
letting Dy = 0 (i.e., the film does not move: x = x¢ and y = yy) and substitut-
ing the movement of the point source of x rays in standard tomography for
the intensity distribution of the finite-size focal spot. Under these condi-
tions all the derivations leading to (5) and (6) are still valid, but with Dg = 0.
It should be noted, however, that the exposure function Iy(x,,y) is substan-
tially different, although mathematically it makes no difference. Thus in
conventional radiology the transfer function to be used in (5) is given by

CR ST
Hi (fx’fy’zi)—Hi (fx’fy’zi) D2=0 (8)

Therefore, the mathematical models of standard tomography and
conventional radiology are similar, but with different transfer functions.

In conventional radiology none of the transfer functions for any layer is
identically equal to a constant, except in the limiting case that z; = 0 (film
plane).

As before, the radiograph can be filtered so that the overall transfer
function of one of the layers is equal to a constant, thus converting a radio-
graph into a tomogram. Hence the equation of a tomographic filtration
process is the same as (5), but with the transfer function H; given by (9):

CR
HW(f ,f ,z)
TF CR X i
Hi (fx’fy’zi) - Ht(fx’fy)Hi (fx,fy’zi) - H(fx’fy) (9)
where
a 1 a 1
H(E )% (10)

y I-I(fx’fy) H_CR(f ,f ,2)
i x'y' i zi=zt

and where z, is the depth of the layer to be deblurred by the tomographic
filter {25]. Equation (10) shows that the transfer function of the tomographic
filter Ht(fx,fy) is the inverse of the transfer function for conventional radiol-
ogy given in (8) and with zj = z¢, the depth of the desired plane of cut.
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Consequently, it has been shown that by comparing the movement of
a point x-ray source with a finite-size focal spot and replacing the move-
ment of the film in standard tomography by filtering a conventional radio-
graph, an analogy between standard tomography and tomographic filtering
can be established,

It is interesting to note that the mathematical equations of conventional
radiology, standard tomography, and tomographic filtering are similar,
Nevertheless, there are fundamental physical differences among these
methods [25,32). The exposure function Ig(.,.) in conventional radiology
and tomographic filtering is defined over the area of the focal spot and the
edges of this intensity distribution are not sharp, as discussed previously.
On the other hand, in tomography, Iy(.,.) defines the movement of a point-
like x~ray source which is turned on and off over a line which can be straight,
circular, elliptical, spiral, hypocycloidal, and so on. This means that the
blur in conventional radiology is more uniform in all directions than in
standard tomography. The uniformity of the blur is the reason why the
more complicated x-ray source movements are preferred in tomography;
the scanning of an area by an x-ray source has also been considered in
tomography and it has been referred to as areal tomography {69, p. 63].

Of course, the source of x rays in tomography is also of finite size, but the
blur that this produces is generally negligible compared to the blur due to
its movement.

The nature of the processes themselves are also different. Indeed,
the transfer functions of conventional radiology and standard tomography
correspond to truly radiologic procedures, while the transfer function of a
tomographic filtration process has a component (the denominator) which
corresponds to an image processing operation (inverse filtering). Thig
means that the errors and noise are of different nature in each case. In
standard tomography additional blur or errors occur if the patient moves
during the exposure or there are mechanical misadjustments. On the other
hand, in a tomographic filtration process the effect of a patient moving is
not so critical because the exposure time is much shorter, but the filtering
process is not ideal in practice and noise may be amplified by the inverse
filter, especially at high frequencies, where the gain is greater.

Tomographic filters will require new ways of examining images inter-
actively with an image processor. In addition to the normal human factors,
an important consideration in image processing when images are to be
judged by the human eye is the psychophysics of vision [70,71]. For exam-
ple, the mean-squared-error criterion is in very poor accord with subjec-
tive evaluation [47], and phase accuracy is extremely important in image
processing filters [72].

Tomographic filters could be readily applied when on-line medical
image communication systems [73] are available in hospitals, which will
facilitate the storage, retrieval, processing, and display of images.
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3.3. Variation of the Transfer Function with Depth

Ideally, a tomographic filter should have a frequency response such that in
combination with the transfer function of the radiologic system, the result-
ing overall transfer function would be equal to a constant for the tomo-
graphic layer and equal to zero everywhere else. In practice, the second
condition cannot be met, not even closely. It is the purpose of this analysis
to investigate the overall frequency response at different depths.

The overall transfer function for a particular layer is equal to the
quotient of the transfer function for that layer without the tomographic filter
and the transfer function of the tomographic layer [see (9) and (10)]. Evi-
dently, for the tomographic layer the overall transfer function is identically
equal to a constant. The overall transfer function for other layers was
analyzed and it is shown in Fig. 5. For simplicity and without loss of gen-
erality, one-dimensional functions are considered in Fig. 5. Since the
shape of the transfer function is low-pass and its bandwidth increases with
depth, it is clear that the tomographic filter acts as a low-pass filter for
layers between the plane of cut and the focal spot, and as a high-pass filter
for layers between the plane of cut and the film. This analysis can also be
applied to any inverse filtering problem in which the inverse filter has a
scaling error.

focal spot
N H; (f,z;) Z; >z,
focal spot
side f
H; (f,z; =
i (tz) Zj=1z,
~
Y Rt iodutale plane of cut
e
f
2. <z
Hithz) A"
2, film side
L
f
J
film

FIGURE 5 Variation with depth of the overall magnitude response in a
TFP. (From Ref. 25.)
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where ¢, represents
the spectrum of the
layer i

FIGURE 6 Scaling of the spectra of the images of layers at various depths.

Since radiographs consist of the superposition of the images of many
layers, to understand the effects of radiograph processing fully we must
also consider the composition of the spectrum of the projected object. Since
different layers suffer different magnifications during exposure, the
corresponding two-dimensional Fourier transforms of their shadow images
are scaled accordingly. Assuming that each layer has the same spectrum,
the relative scalings during magnification are shown in Fig, 6 (for sim-
plicity they are shown in one dimension only). These different scalings of
the shadow images of the layers in the object make the processing of radio-
graphs more interesting. For example, a low-pass filter would enhance
the images of the layers closer to the focal spot, while a high-pass fil-
ter would enhance the images of layers closer to the film. With band-
pass or spectral-shaping filters in general, selective enhancement of
certain layers could be realized. This is referred to as tomographic
enhancement (as opposed to tomographic restoration, which has been
described in this chapter).

3.4. Performance Comparison

The transfer functions contain all the information necessary to compare the
various systems. However, they are inconvenient to calculate and compare.
The first simplification is to ignore the phase transfer function and consider
oauly the magnitude transfer function, usually referred to as the modulation
transfer function (MTF). Nevertheless, for ease of comparison single-
number parameters are commonly used in radiology. Tomographic filtering
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has been compared with standard tomography/zonography and conventional
radiology on the basis of the following parameters: the exposure angle,

the thickness of the tomographic layer, the rate of change of the modulation
transfer function, the signal-to-noise ratio, and the patient dose [25,74,75].
The conclusion of that comparative assessment is that tomographic filtering
can be an improvement over conventional radiology, but cannot achieve the
results of standard tomography. The main advantage of tomographic filter-
ing is in reducing the radiation dose to the patient. These analytical results
have been corroborated practically by processing both simulated radiographs
and actual radiographs [25,76]. A brief summary of the comparative assess~
ment of tomographic filtering follows, and pictorial examples are given below
(Sec. 4).

Thickness of the Tomographic Layer

In standard tomography the thickness of the cut is normally defined
as the distance between two levels which have a tomographic blurring that
is insufficiently large to be noticeable in the presence of the usual radio-
graphic blurrings. This is a subjective definition and depends on the relative
amount of other blurrings, such as those due to the focal-spot intensity
distribution and patient movement. On the other hand, in a tomographic
filtration process (TFP) the tomographic blur is based on the focal spot
intensity distribution, and the blur due to patient movement is negligible
because the exposure time is very short.

Hence the thickness of the cut depends on the extent of the movement
of the x-ray source in tomography or the size of the focal spot in a TFP. It
is more usual to give the exposure angle rather than the extension of the
movement of the x-ray source (or size), The exposure angle is defined as
the angle through which the projecting ray of a central point of the plane of
cut "moves" during the exposure. In tomography the exposure angle nor-
mally ranges from 1 to 5°(in zonography) to 120 to 170° (in transversal
tomography) [3]. In conventional radiography, and therefore in a TFP, the
exposure angle is determined by the size of the focal spot. With a typical
focal spot size of 2 mm and focal spot to plane distance of 1000 mm, the
exposure angle is about 0.1°. Thus, in terms of the exposure angle, a TFP
would be closer to zonography than to any other tomographic technique.

When exposure angle is translated to thickness of cut, in standard
tomography it is of the order of a few millimeters, in zonography it is of
the order of a few centimeters, and in a tomographic filtration process even
larger. Due to the lack of experimental data, conclusive results cannot be
given for a TFP [25]. However, it is expected that by using visual work-
stations for interactive viewing (e.g., with zooming and magnification) the
apparent thickness of cut in a TFP could become close to that of zonography.
A TFP is an improvement over conventional radiography, but it cannot
achieve the thin cuts of standard tomography.
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The Rate of Change of the Modulation Transfer Function

A measure has been proposed to quantify the contrast between layers
after they have been imaged on the film [25]. This is based on the rate of
change of the transfer functions in (6), (8), and (9) from layer to layer for a
specific type of exposure function Iy(xq,yo). Quantitative results were
obtained by assuming a single-peaked gaussian function in all three cases.
This may not be realistic, but it provides a good basis to compare the per-
formance of the tomographic filtration process with that of standard tomog-
raphy. When identical exposure functions are considered, the results
showed that for layers between the focal spot and the plane at a distance
(dzy)/(2d - z¢) from the film, the transfer function in a TFP varies faster
from layer to layer than in the equivalent system using standard tomography.
It can be shown that this interval always contains the plane of cut z; = z,
hence in a region around the tomographic layer a TF P gives better contrast
between layers than standard tomography. However, if the normal sizes of
the exposure function are taken into consideration (i.e., about 500 mm in
standard tomography and about 2 mm in TFP), the performance of standard
tomography is by far better because the interval around the plane of cut is
negligible.

The Signal-to-Noise Ratios

The signal-to-noise ratio (SNR) is defined here as the ratio of the
power of the signal from the tomographic layer if it was the only one present
in the object and the power of the noise contributed by all other layers.

The signal-to-noise ratio provides another measure of the contrast of the
image of the plane of cut with respect to the others.

The object being x-rayed, represented by the distribution of linear
attenuation coefficients, is considered to be a random process. The power
is given by the integral of its power spectral density function. To determine
the signal-to-noise ratio the power component due to the image of the tomo-
graphic layer (P;) and the noise power due to the other layers (Py) are
separated. It is also useful to separate the noise power due to layers be-
tween the anode and the tomographic layer (P,) and the noise power due to
layers between the tomographic layer and the film (Pf). Equation (11) shows
how they are related:

= = 11
P Pt+Pn Pt+Pa+Pf (11)
Formulas to calculate these powers can be found in [25,75]. The
various signal-to-noise ratios can then be calculated as follows:
Pt
. 2
SNR 7 12)

n
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Pt
SNRa = 7 (13)
a
Pt
SNRf =3 (14)
f
SNRa X SNRf
SR = S o, as)

Equations (11) to (15) were calculated in about 4000 cases. Table 1
shows a representative sample of the results: the variation of the signal-to~
noise ratio with respect to the nominal thickness of the tomographic layer.
To calculate Table 1 the following parameters were assumed: d = 1000 mm,
z¢ = 500 mm, object of thickness 264 mm and positioned at equal distances

TABLE 1 Signal-to-Noise Ratios Versus the Thickness of the Cut

Thickness of the cut (mm)

4 20 40 100 200 240
Standard
tomography
SNR 0.017 0.089 0.19 0.67 3.6 11.
SNR, 0.033 0.18 0.39 1.3 7.1 23.
SNR¢ 0.033 0.18 0.39 1.3 7.1 23,
Conventional
radiography
SNR 0.015 0.081 0.18 0.60 3.1 9.8
SNR, 0.036 0.19 0.43 1.5 8.3 217.
SNR¢ 0.026 0.14 0.3 0.99 4.9 15.
Tomographic
filtering
SNR 0.013 0.068 0.15 0.48 2.3 7.4
SNRy 0.045 0.24 0.55 2.1 13. 417.
SNR¢ 0.018 0.093 0.2 0.62 2.8 8.7
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from film and focal spot, object made of white noise bandlimited at 5 cycles/
mm, and Ig(xg,¥0) = exp(-100x% - 100y2).

The SNR (also SNR, and SNRy) increases with the thickness of the
tomographic layer, as expected, because of its definition. Other results
have shown that when the object is moved closer to the focal spot or the size
of the exposure function increases, the SNR increases in standard tomog-
raphy, but in conventional radiography and tomographic filtering it decreases
[25]. When the system parameters are the same (i.e., any colmun in
Table 1) SNR, is maximum for tomographic filtering and minimum for
standard tomography. On the other hand, SNRy and SNR are maximum for
standard tomography and minimum for tomographic filtering. This shows
that tomographic filters perform better for layers in the object closer to the
film. When the tomographic layer is closer to the focal spot, the high-pass
effect on the layers on the side of the film produces the decrease in SNR
through an increase in the noise power.

These measures give only an indication of the performance from a
theoretical point of view. In practice, the object is very structured and the
effects of noise due to other layers cannot be calculated statistically.

The Radiation Dose

The goal in radiagnostic radiology is to obtain ag much relevant infor-
mation as possible from inside a patient's body, while keeping the total
radiation dose to a minimum to reduce any possible danger to the patient.
Each radiologic procedure represents a compromise between dose and image
and diagnostic qualities [77]. Standard tomography must be regarded as a
relatively high-dose procedure and it is used only when there are specific
indications which outweigh the risks [3, p. 314], The radiation dose per
exposure, typically 1 to 2 rad, is comparable to conventional radiology, but
the total dose is usually greater since multiple exposures are the rule
because the position of the relevant structures is not usually known.

Here the advantage of tomographic filtering is clear. With a single
radiograph and tomographic filtering operations of different parameters,
various images can be produced from which indications of the positions of
the structures can be obtained. Once they are known, a subsequent thin-
section tomogram at the proper depth using standard techniques may give a
more accurate representation.

4, DESIGN AND REALIZATION OF
TOMOGRAPHIC FILTERS

In order to implement tomographic filters, the transfer function in (10) is
to be applied to the radiological image represented by G(ix,fy) in (5) (see
[25,32]).
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e G(E,,f,) B(E 1) fd H(f ,f ,2.)
F 2 XV X ¥ 2 XY L p ¢ f,2)dz (16
¢ty HELT) T B BELL) Ty T HELL) ulEyotyr2y) dz; (16)

where F(fx,fy) is the Fourier transform of the radiographic image after it
has been processed with a tomographic filter.

In this section we examine the process of designing a digital filter
with transfer function Hy(fy,f,) as given by (10). The approach used is
inverse filtering, which is not the best but the simplest. Four steps are
considered: determination of the function I; and the system impulse response
(Sec. 4.1), noise handling techniques (Sec. 4.2), determination of the coef-
ficients of the digital filter (Sec. 4.3), and implementation considerations,
including examples (Sec. 4.4).

4.1. System Impulse Response
To determine Ht(fx’fy) as given by (10), the following information is needed:

1. The distance d between the focal spot and the film when the object is
imaged

2. The depth z; of the layer of interest in the object that has to be deblurred

3. The exposure function Ip(xg,y0)

As discussed previously [see (4)], the exposure function Ig(xq,yq) can
be obtained by imaging an object with a known distribution of absorption
coefficients, such as a pinhole. The pinhole approximates a delta function
and thus the system impulse response or point-spread function (PSF),
h(xg,ys), is obtained.

Actual PSFs were obtained using the pinhole method and the x-ray
equipment of the Radiological Research Laboratories, University of Toronto.
Contour and perspective plots of a typical PSF and its squared modulation
transfer function (MTF) are shown in Fig. 7. The nominal size of this focal
spot was 1 mm. The x-ray film was digitized and the squared MTF was
calculated using a two-dimensional FFT [25].

As will be discussed later, it is convenient to approximate the PSF
by a separable function to save computer memory in the design of a tomo-
graphic filter. We have chosen a separable approximation in the frequency
domain, Denote the PSF by h(xf,yf) and its two-dimensional Fourier trans-
form by H(fx,fy). Then define a separable PSF hg(x¢,yr) as
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where
h (x) = 3"1}Hx(fx)§ S $'13H(fx,0);
-1 s -1
hoyp = & 3H ()} F 0, D)

The separable two-dimensional Fourier transform of hg(x¢,y¢) is then

H(pf) =B (EIH () = B, 0HO, L) (18)

According to the projection-slice theorem [14], this approximation
keeps invariant the projections of the PSF along the x axis and y axis. This
results also in further advantages, such as a smoothing of the PSF and
reduced computer time. The result of this approximation on the PSFs of
Fig. 7 is shown in Fig. 8.

The transfer function Ht(fx,fy) is then calculated according to
(10) and can be implemented using digital (see [25]) or optical (see [55,
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FIGURE 7 Focal spot of an actual x-ray tube; (a) impulse response;
(b) squared MTF.
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(a)

01@) 0

(b)

FIGURE 8 Approximation of the focal spot in Fig. 7 by a separable func-
tion: (a) impulse response; (b) squared MTF.

56)) techniques. This chapter deals with the digital implementation only.
It should be noted that the PSF h(x¢,ys) has to be measured only once for a
given focal spot, because the tomographic filter transfer function Hy(f, ,fy)
can be determined for any layer using the appropriate scaling factors [see
(4) and (10)].

4.2. Noise Handling Techniques

The filtering operation is indicated in (16). Unfortunately, H(f,,f,) may
have zeros and G(fy,{,) is usually corrupted by noise. Thus the filtered
image would include a large amount of noise at spatial frequencies in the
neighborhood of a zero of H(fy,Iy). If the zeros are located at frequencies
which are higher than those where the relevant physiological information is
contained, a low-pass filter will be sufficient. Otherwise, noise handling
techniques are necessary. Many such techniques have been described in
the literature (e.g., [49,78]). No comparative assessment of all these
techniques is available, only subjective estimates in specific cases [79].
Inverse filtering is not the best (especially in the presence of noise), but it
is the simplest. Since our goal was not the determination of the best method
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of image restoration, but to test the feasibility of tomographic filtering,
we used a simple technique which provides a meang for hard-limiting the
magnitude response of the inverse filter while preserving the phase response
and cutting off the high frequencies dominated by noise. The phase response
should always be preserved because it is very important in images [72].
Both the hard limit and cutoff frequency can be specified by the user.

The goal is to design a filter whose transfer function ﬁt(fx,ff) isa
modified version of Ht(fx,fy) as shown in (10), in order to satisfy the con-
straints:

1.. The magnitude response is limited:

|ﬁt(fx,fy)‘ SH (19)
2, The phase response is the same:

< ﬁt(fx,fy) = <H(E, ) (20)

This is accomplished by defining ﬁt(fx,f ) as follows [see (10)]:

1 1
_— for ————— < H_ (21)
H(fx,fy) IH(fx,fy) | L
Ht(fx’fy) = HL + jo for IH(fx,fy)l =0 (22)
Re[H(f ,f ] -jI_[H(f_,f )] 1 SH. (2
HL X'y m x’y"  for ———lﬂ(fx,fy)l L (23)

H(E,,{)

Equations (21) to (23) are consistent with (19) and (20); that is, the
phase response is preserved and the dynamic range of the magnitude response
can be controlled with the parameter Hy to prevent noise amplification and
overflow of computer registers. In a digital computer all these operations
are straightforward and they have been coded in FORTRAN routines [25].
Examples of applications are given below. It should be noted that under the
transformations (20)-(22) a real PSF remains real, and an even PSF remains
even.

Since the system transfer function usually has a low-pass character-
istic, the inverse filter has a high-pass characteristic. Therefore, it is
convenient to cascade the inverse filter with a low-pass filter to reduce the
noise at high frequencies where the gain of the inverse filter is greatest.

The choice of the cutoff frequency of the low-pass filter is a trade-off
between the desired resolution and noise.
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To design and implement the tomographic filter in (10), any other
restoration filtering technique could have been used [49]. For example,
Wiener filtering techniques have been applied to the design of digital tomo-
graphic filters [80].

4,3. Two-Dimensgional Digital Filter Design

During this research the windowing technique for designing two-dimensional
finite impulse response (FIR) filters was chosen because it can easgily be
used to approximate a completely arbitrary complex frequency response,
such as that of a tomographic filter as given in (10). This includes both the
magnitude and the phase responses. The argument justifying the use of the
windowing technique is similar to that for the use of inverse filtering: dur-
ing this research the parameters of the tomographic filters were changed
frequently, thus a simple design technique was justified for this initial work.
In future research, optimized two-dimensional IIR filters may prove more
adequate.

The process of determining the digital filter coefficients can be
described with reference to Fig. 9. This figure shows one-dimensional
functions only, because the two-dimensional filters used were separable.
Nevertheless, the same procedure would apply to nonseparable filters be-
cause the extension of the windowing technique to two dimensions is straight-
forward [25]. Figure 9a shows the magnitude response of the ideal inverse
filter, as in (10). During this step, a correction by interpolation may be
included if the sampling intervals of the PSF, h(xf,yf), are not equal to those
of the digitized radiograph. From the plot in Fig. 9a, a suitable hard limit
is chosen and by applying the transformations (20) to (22) the filter in Fig.
9b is obtained. During this research the hard limits were selected by trial
and error; however, they could eventually be predetermined for a given sys-
tem in order to produce optimum results.

Figure 9c¢ shows the effect of introducing a low-pass filter to reduce
the noise at high frequencies, as discussed previously. Figure 9d shows
the impulse response of this filter. The windowing technique can now be
applied to determine the digital filter coefficients, The Kaiser window [82]
was chosen not only because of its optimal behavior but also because it con-
tains a parameter 8 that controls the frequency response trade-off between
resolution and ripple.

A high 8, such as 8 =9, was used in order to obtain low ripples and
a smooth transition band. Figure 9f shows the result of multiplying the
impulse response in Fig, 9d by the Kaiser window in Fig. 9e. Finally, the
FFT is used to obtain the coefficients of the tomographic filter in a form
suitable for fast convolution realizations. The magnitude response of the
tomographic filter is shown in Fig, 9g and h. An example of a tomographic
filter that was actually used is shown in Fig. 10, This filter was obtained
by multiplying two one-dimensional digital filters. Source listings of the
computer programs (FORTRAN) used throughout this research can be found
in [25].
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FIGURE 9 Plots of relevant functions at each step of the design of a
a digital tomographic filter using the windowing technique (one dimen-
sion shown only): (a) magnitude response of the ideal inverse filter
(in decibels); (b) inverse filter in part (a) with hard-limited magnitude
response; (c) filter in part (b) cascaded with an ideal low-pass filter;
(d) impulse response of the filter in part (c); (e) Kaiser window with
B8=19; (f) windowed impulse response [part (d)] multiplied by part (e);
(g) magnitude response of the tomographic filter; (h) the same magni-
tude response in decibels. (From Refs. 25 and 81.)
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FIGURE 10 Typical tomographic filter; (a) magnitude response; (b) magni-
tude response in decibels.

4.4. Implementation and Examples

Filtering the data is the simplest operation in the whole process, although
it is the one that requires the most CPU time. A portion of the radiograph
to be processed is chosen and multiplied by a two-dimensional cosine taper
data window to reduce the effects of leakage {25]. It is then Fourier-trans-
formed using a two-dimensional FFT. The size 256 x 256 was found to give
a good trade-off between resolution and cost for these experiments. The
transform of the radiograph and the filter coefficients are complex-multi-
plied point by point. The result is inverse-transformed, quantized to 6 bits,
and stored ready for display.

Three types of experiments were carried out to evaluate practically
the performance of tomographic filters. For the first two, the radiologic
gystem was simulated in a digital computer by approximating the image for-
mation equations in the space domain {25]. This approach provided flexi-
bility in the choice of focal spot shapes and object characteristics. Two
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FIGURE 11 Experiments with thin objects: single-layer object with
100%/0% absorption located at 400 mm from the film plane. (a) Simu-
lated radiograph of this object using a gaussian focal spot. (b)-(g) Re-
sults of processing part (a) with digital tomographic filters designed
for the following depths (distances from the film plane): (b) 600 mm;
(c) 550 mm; (d) 500 mm; (e) 450 mm; (f) 400 mm; (g) 350 mm,
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types of objects were simulated: "thin" objects (single layer) and a three-
dimensional object composed of only two layers at different depths. Pic-
torial results of these simulations are reported below. The third type of
experiment used actual radiographs. The radiographs were digitized and
the impulse response of the system was calculated, as discussed previous-
ly [25].

Figure 11 shows the result of an experiment with a thin object (single
layer) to see better the effect of tomographic filtering at various depths.
This radiograph (Fig. 1la was simulated using a gaussian focal spot. The
focal spot-to-film distance of the simulated system was 1000 mm. The
object had 100% absorption, an aperture in the shape of a squarelike annulus,
and a small hole in the center to obtain the impulse response. Each image
has 128 x 128 pixels. Figure 11b-e clearly show the high-pass effect when
a filter designed for one layer is used on another layer located closer to the
film (see Fig. 5). The breakdown of unwanted structures is dramatic, al-
though in practical applications the added source of noise may hinder the
view of other layers.,

Figure 11f shows the result when a single layer is in focus by the
tomographic filter. The image in Fig. 11g contains blur because of the
low-pass characteristics of the overall transfer function (see Fig. 5).

To observe the effect of layer superpositions, with the tomographic fil-
ter acting simultaneously on all layers, a three-dimensional object was
composed by having parts of a star test pattern at two different levels and
oriented at 90° with respect to one another. Figure 12a shows a simulated
radiograph obtained with a gaussian focal spot. The focal spot-to-film
distance was 1000 mm and the two layers of the object were positioned at
depths (distance from the film) of 400 mm and 600 mm. The absorption in
the object was 50%.

Figure 12b shows a simulation of an x-ray image obtained with a
punctual focal spot. It has a blocklike structure, not visible in the other
simulated radiograph because it is smeared by the blur. The object absorp-
tion in this case was 100%.

Figures 12¢-d show the two-dimensional Fourier transforms of the
images in Figs. 12a-b, respectively. Figure 13 shows the results of filter-
ing Fig. 12a with digital tomographic filters. Magnitude-response hard
limits and cutoff frequencies were applied to reduce the effects of noise.
The values of the hard limits and cutoff frequencies were chosen by trial and
error in these experiments. In Figs. 13a-b the objective is to recover the
layer at 600 mm from the film (horizontal bars), but it was not possible to
eliminate the image of the other layer. In Figs. 13c-d the objective is to
recover the layer at 400 mm from the film (vertical bars) and the results
are better, The effects of tomographic filtering are particularly good in
Fig. 13d, where the blocklike structure of the vertical bars has been recov-
ered well and the other layer (vertical bars) is not so clear. Thus we can
conclude that tomographic filtering is easier when the layer of interest is
closer to the film.



Digital Tomographic Filters for Radiographs 615
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FIGURE 12 Experiments with thick objects: two-layer object with layers
located at 600 mm and 400 mm from the film plane: (a) simulated radio-
graph of this object (50%/0% absorption) obtained with a gaussian focal spot;
(b} simulated radiograph of this object (100%/0% absorption) obtained with a
point source; (c)-(d) images representing the logarithm of the magnitude of
the two-dimensional Fourier transform of the images in parts (a) and (b),
respectively.
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FIGURE 13 Results of filtering the radiograph in Fig. 12a with digital
tomographic filters. Filters designed to recover the layer farthest away
from the film: (a) filter with minimum gain of 10 dB; (b) filter with maximum
gain of 20 dB. Filters designed to recover the layer closest to the film:

(c) filter with maximum gain of 20 dB; (d) filter with maximum gain of

40 dB.
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More examples of digital tomographic filters for radiographs can be
found in {25,73,76,83,84]. In particular, the experiments with actual radio-
graphs consisted of radiographs of a phantom chest with lesions on either
side of the chest {25]. After processing these radiographs with tomographic
filters, the image of a lesion tended to disappear when its depth did not
coincide with the depth of the tomographic filter. This would permit deter-
mining the depth at which this lesion lies. Nevertheless, more research is
necessary with actual radiographs to determine possible medical applications
of tomographic filters.

5. CONCLUSIONS AND DIRECTIONS FOR
FURTHER RESEARCH

In this chapter the problem of obtaining three-dimensional information by
means of x rays has been discussed. The principal techniques used for that
purpose have been reviewed briefly. A new technique, referred to as tomo-
graphic filtering or TFP, has been described. The idea is to filter conven-
tional radiographs for the simulation of standard tomography, based on the
finite size of the focal spot.

It has been shown that a TFP has a low-pass filter effect on the images
of layers between the plane of cut and the focal spot and a high-pass effect
on the images of layers between the plane of cut and the film. The per-
formance of tomographic filters has been compared with standard tomography
and conventional radiology. The theoretical and practical evaluations of the
performance of tomographic filters have shown that the image-quality results
cannot be as good as those of standard tomography in terms of the thickness
of the tomographic layer, but they represent an improvement over conven-
tional radiology. Tomographic filters allow the image analyst to interact
with the system to exploit its capabilities, rather than being a passive
observer of an image. The greatest advantage of a TFP is in reducing the
radiation dose to the patient. Indeed, with a single radiograph and tomo-
graphic filtering operations of different parameters, additional depth infor-
mation can be recovered without increasing the patient dose. Since tomo-
graphic filters can be implemented without the use of any special-purpose
x-ray hardware, they extend the utility of conventional radiology equipment.

More research is required to determine possible clinical applications
of tomographic filtering, as well as to optimize their design and implemen-
tation, A few possible directions follow.

Since the performance of tomographic filtering depends on the char-
acteristics of the human body, such as position and size of lesions, overlay-
ing and underlaying structures (e.g., ribs), exposure, geometry, direction
of the projection, and so on, the medical evaluation of tomographic filtering
should take these variables into account in order to determine for what appli-
cations (e.g., type of disease, organ, lesions) tomographic filtering could
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complement other methods in the medical imaging hierarchy. Medical
image information quality standards are needed so that rules can be set for
calibration of experiments and the results of experiments can be judged
accordingly. The peculiarities of the tomographic filtering process, such
as the high-pass effect between the plane of cut and the film, need to be
investigated further with respect to the diagnostic quality of the processed
radiograph. The influence of the type of focal spot [i.e., the exposure
function Ig(xg,y0)] could also be investigated taking into account the trade-
offs: for example, larger focal spots give better depth resolution but
restoration is more difficult.

Another area is the design of digital tomographic filters, Filter
structures, such as homomorphic, Wiener, and various modifications of
inverse filtering, could be evaluated to determine their suitability for tomo-
graphic filtering. The use of recursive techniques for digital tomographic
filters could be investigated, because "recursive tomographic filters" would
probably use less computer memory and time in their implementation.
Filter parameters such as the order of the tomographic filter, computer
word length, mode of arithmetic, and round-off errors would influence both
the cost and the quality of the results; thus trade-offs should be determined.

Finally, extensions of this research can be suggested. It might be
possible to identify the blur characteristics from the radiograph itself,
using the techniques of power spectrum and power cepstrum estimation,
The use of tomographic filtering might be useful as a preprocessing tech-
nique for automated pattern recognition processes. Tomographic filtering
may also have applications in standard tomography, in order to change the
plane of cut of a tomogram by means of tomographic filtering. The tomo-
graphic filtering concept might be useful in other areas, such as geophysics,
nuclear imaging, astronomy, ultrasound, and photography.
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