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Tomographic filters for digital radiography

José M. Costa
New Services Planning, Bell-Northern Research Ltd.
P.O. Box 3511, Station ‘C’, Ottawa, Canada K1Y 4H7

Abstract

Conventional radiographs (digitized or not) do not provide information about the depths
of details and structures because they are two-dimensional projections of three-dimensional
bodies. Taking advantage of the finite size of the X-ray source and the divergent nature of
the X-ray beam, a radiograph can be processed by two-dimensional digital filtering
techniques, so that the image of a particular layer is improved, while the others are
degraded. This technique is referred to as a Tomographic Filtration Process (TFP). This
paper explains the mathematical and physical foundations of the method and the engineering
considerations in the design and realization of tomographic filters. Theoretical
comparisons between conventional radiography, standard tomography and tomographic filtering
are discussed in terms of the thickness of the tomographic layer, the rate of change of the
Modulation Transfer Function (MTF) and the signal to noise ratios. Finally, experimental
results are shown to demonstrate the effect of tomographic filtering at different depths.

Introduction

The problem of imaging three-dimensional bodies and obtaining information about the depth
of details and structures has been recognized for a long time. As early as 1916 special
radiographic procedures were invented to obtain clear images of certain parts of an object
by blurring images from other parts [1]1. These procedures will be referred to throughout
this paper as standard tomography. More recently, significant advancements have been made
in computer-assisted tomography (CAT) and coded aperture imaging [21. Nne of the remaining
challenges is to improve the diagnostic value of the billions of radiographs being produced
in hospitals every year using conventional radiography equipment. Conventional radiography
does not include special techniques that will highlight single layers in the body being
imaged. Enhancement and restoration techniques have had limited practical application to
the processing of radiographs [2]. With digital radiography, techniques that had only been
used in lab experiments could now be applied much more readily. However, little work has
been published on the problem of recovering three-dimensional information from a single
radiograph (ef. [3]).

The purpose of this paper is to describe a procedure for improving three-dimensional
information in a radiograph using digital techniques. This method will be referred to as
tomographic filtering or a tomographic filtration process (TFP).

Before any improvement of radiographs can be attempted, it is necessary to study the
characteristics of the image formation process to find out what are the depth-dependent
features. To date, almost all theory of conventional radiography has dealt with
two-dimensional objects (cf. T41). The very nature of the radiologic process, however,
forces one to consider three-dimensional objects in all imaging problems. The radiographic
process consists of a sequence of transformations intimately related in that the result of
one forms the input to the next 5], An analysis of these transformations has shown that
the only effects that could be useful for obtaining three-dimensional information are due to
the finite size of the focal spot and the diverging nature of the X-ray beam "5]. Tndeed,
due to the finite size of the focal spot, there is a blur associated with the image of each
layer, which is depth-dependent.. This suggests that there could be some kind of selective
restoration of each layer's image ftomographic restoration). Also, the diverging nature of
the X-ray beam has the effect of magnifying each layer in the film, so that the spectra of
the layers are scaled differently. This suggests that selective enhancement of the layers
could be realized by means of spectral shaping filters (tomographic enhancement).

Mathematical foundation of tomographic filtering

This approach to tomographic filtering of radiographs uses the depth-dependent focal-spot
blur. A tomographic filtration process (TFP) will be understood better by comparing it with
standard tomography.

Standard tomographic techniques produce a tomogram by moving a point-like X-ray source

and the recording film in a coupled manner, so that during the exposure only the parts of
the body lying in one specific plane parallel to the film plane are always projected on the
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same place on the film, while the others are blurred [1]. The layer whose image is in focus
is referred to as the plane of cut or tomographic layer.

A tomographic filtration process (TFP) should produce a focusing effect similar to that
of standard tomography; but with no moving parts. 1In a TFP, instead of moving the X-ray
tube, the finite size of the focal spot is used to advantage and instead of moving the film,
a filter is used to process a conventional radiograph. Tndeed, by applying superposition an
equivalent source of X-rays could be conceived by moving a hypothetical point source all
over the region of the actual source. The movement of this point source is analogous to the
movement, of an X-ray tube in standard tomography. Since in conventional radiography the
film does not move, the images of all the layers are blurred. Therefore, in order to
convert a radiograph into a tomogram the radiographic image is processed by a filter that
will produce an effect equivalent to that produced by the motion of the film in standard
tomography.

To derive the transfer function of such a filter, the equaticns of image formation in
radiography had to be derived for three-dimensional objects. To make the results more
general and allow comparisons between systems, the model of conventional radiography was
derived as a special case of standard tomography. This derivation was motivated by that in
[7]. Some of the constraints in [7] were removed, namely, the linear movement of a
constant-intensity X-ray source, while others relevant to this application were added,
namely, small displacements of the X-ray source. lNevertheless, none of these constraints
imply a lack of generality in the derivation.

Consider the diagram of standard tomography shown in Figure 1. The reference coordinate
systems shown in Figure 1 are self-explanatory: Xo,Yo 1is the film plane, xt,yt 1is the
plane of cut, xi,yi; 1is any layer in the object at depth zj (its distance to the film
plane), xr,yr 1is the (moving) film and x,y 1is the (fixed) plane containing the film. In
this model, the X-ray point source (X) can move anywhere in the plane xg,Yo Pparallel to
the film and the intensity during this trajectory is given by Io(x0,¥0), which will be
referred to as the exposure function. Tn standard tomography the film also moves in
synchronism with the X-ray source to keep the desired nlane of cut xt,yt in focus.

It 1s not possible to reproduce here all the deotails of the derivation, which can be
found in [5]. However, it is important to note the approximations made:

1) The X-ray intensity from (xo0,yo) to {(xf,yr) is independent of (xg,yf).

2) If the displacements of the X-ray source are small compared to the distance from the
source to the plane of cut, then a differential length along the X-ray path (ds) can
be replaced by the corresponding vertical differential length (dz;).

3) Since the values of the linear attenuation coefficients, or at least its variations
from point to point, are small, the exponential representing the attenuation of X-rays
through matter can be approximated by the linear terms of its Taylor series expansion
[71]

Considering these approximations, the final result is given in (1):
G (fyfy) = Ip 8 (F f ) — f H; fy.zi) Fy (i fy.2)) dz (n

where G(fy,fy) is the Fourier transform of the resulting image on the film, Iy is a
constant, §(Ty,fy) is the Dirac delta function, H; (fy ,z ) is the transfer function of the
ith layer, at a distance z; from the film, as glven 1n and F (fy, y,zl) is the
two-dimensional Fourier transform of the 3ttenuat10n coefflclenfs, u(xl,yl,z ), at depth Z3
as given in (3):

z;-d Dy z; —d D1 zj—d Dy } —j2m (fx +1,y)
X ) = —_ %
Hi thety.2i) [zi -D, ] ff { Dz d “'z-Dp a 'f° dx dy (2)

d-z d-z —j2m (fyx +f
F#“x.fy,Zi’=ff#( ke v,‘i> IR (3)

The transfer function of the plane of cut is a constant and its impulse response is an
impulse, as expected by intuition (ef. Figure 1). Equation (1) already suggests that the
plane of cut can be changed by filtering the image. Indeed, suppose that there is interest
in the plane at a depth zy=z . Dividing both sides of (1) by H(fx,f ) & Ht(fx.fy,zt), the

new overall transfer function for the layer at a depth z¢ is a constant thus this layer has
become the new plane of cut. The overall traasfer function of the p11ne previously in focus
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X-ray Source Plane

Plane of Cut

Film Plane

Figure 1. Diagram of standard tomography.

(zy=Dp) i3 now 1/H(fx,fy). The overall transfer function for any other layz- (i.e. at depth
Z]'_S, is Hi(fx,fy,Zi)/H(fx,fy).

To derive the equation of conventional radiology, consider a radiologic system with focal
spot intensity distribution Io(xo,yo) and film to focal-spot distance d. The diagram in
Figure 1 still applies by letfing D2=0 and the movement of the point source of X~-rays in
standard tomography 1is replaced by the intensity distribution of the finite-size focal spot.
Under these conditions all the derivations leading to (1) are still valid, but with Dp=0.

It should be noted, however, that the exposure function To(xo,¥0) 1is substantially
different, although mathematically it makes no difference. Thus, in conventional
radiography the transfer function to be used in (1) is:

Zj Zj

P z; —d z; —d _i2m (fux +
Hi“xr'v'zi)=[—l__] ff'o%'—zi_"' : V§° i2m e ) g ay (")
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Therefore, the mathematical models of standard tomography and conventional radiology are
similar but with different transfer functions. 1In radiography none of the layer transfer
functions is identically equal to a constant except in the limiting case that z;=0 (film
plane).

As before, the radiograph can be filtered so that the overall transfer function of one of
the layers is equal to a constant, thus converting a radiograph into a tomogram. Hence, the
equation of tomographic filtering for conventional radiography is the same as (1) but with
the transfer function H;(fy,fy,z5) given by (5).

2
zj —d zj —d zj —d } —j2m (fx +f,y)
Yy
[ P :I fflo{ 5 T yp e dx dy

2
2 —d 2y —d zy—d —j2m (f,x +,y)
[ Z:] jf 'o{ x, ype I gxay

lt Zt
Consequently, it has been shown that by comparing the movement of a point X-ray source
with a finite size focal spot and replacing the movement of the film in standard tomography
by filtering a conventional radiograph, an analogy between standard tomography and
tomographic filtering can be established.

Hi (fx,fy,li) = (5)

The transfer function of the tomographic filter is, therefore, the inverse of the one
shown in (#) with zy=z;, the depth of the desired plane of cut. Since the gain of an ideal
inverse filter can become very high, it is necessary to design the filter carefully, as will
be discussed later.

For evaluation purposes, more significant than the characteristics of the tomographic
filter itself is the overall transfer function (5), including that of the original system.
An analysis of it has shown that in the low-frequency region, the overall transfer function
has low-pass characteristics for layers between the plane of cut and the focal spot [6]. On
the other hand, between the plane of cut and the film the overall transfer function has
high-pass characteristics [6). This is illustrated in Figure 2, where for simplicity only
one frequency axis is shown. These results could also be applied to the study of the
effects of errors in the determination of the transfer function in inverse filtering
problems, in general.

H; (f.;) 7;>2, H; {f.)) Z;= 2y H; (f.z;) ;< z,

focal spot side plane of cut film side

Figure 2. Characteristics of overall transfer function in a TFP.

Comparative evaluation of tomographic filters

A comparative assessment of tomographic filters was produced [6], taking as benchmarks
two well established radiologic procedures: standard tomography and conventional radiology.
This comparison took into account the different nature of the processes (otherwise same
exposure function, same geometry, etc.) and, separntely, the different dimensions normally
associated with each one. The transfer functions in (2), (4) and (5) would contain all the

information necessary to compare %he various systems. However, they are inconvenient to
calculate and compare. The first simplification is to ignore the phase transfer function
and consider only the Modulation Transfer Function fMTF). Nevertheless, for ease of

comparison single number parameters are preferred. The thickness of the tomographic layer,
the rate of change of the MTF and the signal to noise ratios are considered here.
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Thickness of the tomographic layer

In standard tomography the thickness of the cut is normally defined as the distance
between two levels which have a tomographic blurring that is insufficiently large to be
noticeable in the presence of the usual radiographic blurrings. This is a subjective
definition and it depends on the relative amount of other blurrings such as those due to the
focal-spot intensity distribution and patient movement. On the other hwnd, in a tomographic
filtration process (TFP) the tomographic blur is based on the focal spot intensity
distribution and the blur due to patient movement is negligible because the exposure time is
very short.

Hence, the thickness of the cut depends on the extent of the movement of the X-ray source
in tomography or the size of the focal spot in a TFP. It is more usual to give the exposure
angle rather than the extension of the movement of the X-ray source (or size). The exposure
angle is defined as the angle through which the projecting ray of a central point of the
plane of cut 'moves' during the exposure. Tn tomography the exposure angle normally ranges
from 1-5 degrees (in zoncgraphy) to 120-170 degrees (in transversal tomography) [8). 1In
conventional radiography, and therefore in a TFP, the exposure angle is determined by the
size of the focal spot. With a typisal focal spot size of 2 mm and focal spot to plane
distance of 1000 mm, the exposure angle is about 0.1 degrees. Thus, in terms of the
exposure angle a TFP would be closer to zonography than to any other tomographic technique.

When exposure angle is translated to thickness of cut, in standard tomography it is of
the order of a few millimetres, in zonography it is of the order of a few centimetres and in
a tomographic filtration process even larger. Due to the lack of experimental data
conclusive results cannot be given for a TFP [6]. However, it is expected that by using
visual workstations for interactive viewing (e.g. with zooming and magnification) the
apparent thickness of cut in a TFP could become close to that of zonography. A TFP is an
improvement over conventional radiography but it cannot achieve the thin cuts of standard
tomography.

The rate of change of the Modulation Transfer Function (MTF)

A measure has been proposed to quantify the contrast between layers after they have been
imaged on the film [6]. This is based on the rate of change of the transfer functions in
(2), (4) and (5) from layer to layer for a specific type of exposure function I (x ,y ).
Quantitative results were obtained by assuming a Gaussian function. This may not be
realistic, but it provides a good basis to compare the performance of the tomographic
filtration process with that of standard tomography. When identical exposure functions are
considered, the results showed that for layers befween the focal spot and the plane at a
distance (d-Dp)/(2.d - Dp) from the film, the transfer function in a TFP varies faster
from layer to layer than in the equivalent system using standard tomography. Tt can be
shown that this interval always contains the plane of cut zj=D2, hence in a region around
the tomographic Tayer a TFP gives better contrast between layers than standard tomography.
However, if the normal sizes of the exposure function are taken into consideration
(i.e. about 500 mm in standard tomography and about 2 mm in TFP), the performance of
standard tomography is by far better because the interval around the plane of cut is
negligible.

The signal to noise ratios

The signal to noise ratio (SNR) is defined here as the ratio of the power of the signal
from the tomographic layer if it was the only one present in the object and the power of the
noise contributed by all other layers. This signal to noise ratio provides nnother measure
of the contrast of the image of the plane of cut with respect to the others. The detailed
derivation is given in [6], here only a summary is presented.

The objectbeing X-rayed, represented hy the distribution of linear attenuation
coefficients, is considered to be a random process. The power is given by the integral of
its power spectral density function. To determine the signal to noise ratio the power
component due to the image of the tomographic layer (P¢) and the noise power due to the
other layers (Pp) are separated. It is also useful to separate the noise power due to
layers between the anode and the tomographic layer (PL) and the noise power due to layers
between the tomographic layer and the film (Pr). Eguation (5) shows how they are related.

P = Pt + Pnp = Pt + Py + Pr (A)

Formulae to calculate “hese powers can be found in T4]. The various signal to noise
ratios can then be calculated as follows:

SNR = Pt/Pn (7
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SNRay = Pt /Pj (8)
SNRf = Py/Pr (9)

SNR ® SNRfp

SNR

]

- (10)
SNR; + SHRe

Equations (6) to (10) were calculated in about 4000 cases. Table 1 shows a
representative sample of the results: the variation of the signal to noise ratio with
respect to the nominal thickness of the tomographic layer. To calculate Table 1 the
following parameters were assumed: d=1000 mm, z,=500 mm, object of thickness 264 mm and
positioned at equal distances from film and focal spot, objecg made of white noise

bandlimited at 5 cycles/mm, and T5(Xq5,yo)=exp(-100 x5 - 100-y5).

Table 1. The signal to noise ratios versus the thickness of the cut.
Thickness of the cut (mm) ] 20 uo 100 200 2un
Standard SNR 0.017 0.089 0.19 0.67 3.6 11
tomography SNRy n.033 n.18 0.39 1.3 7.1 23

SNRf n.033 0.18 0.39 1.3 7.1 23.
Conventional SNR 0.015 0.081 0.18 0.60 3.1 9.8
radiography SMR4 n.036 N.19 0.43 1.5 Q.2 27.

SMRe 0.02h .10 0.3 0.99 4.9 15.
Tomographic SNR 0.013 0.068 0.15 N.u8 2.3 7.4
filtering SNRg 0.0U5 0.24 0.55 2.1 13. u7,

SNRf 0.018 n.Nn03 n.2 0.62 2.8 8.7

It is clear that the SNR (also SNRz and SNRf) increases with the thickness of the
tomographic layer, as expected, because of its definition. Other results have shown that
when the object is moved closer to the focal spot or the size of the exposure function
increases, the SNR increases in standard tomography, but in conventional radiography and
tomographic filtering it decreases. When the system parameters are the same (i.e. any
column in Table 1) SNRz is maximum for tomographic filtering and minimum for standard
tomography. On the other hand SHNRf and SNR are maximum for standard tomography and minimum
for tomecgraphic filtering. This shows that tomographic filters perform better for layers in
the object closer to the film. When the tomographic layer is closer to the focal spot the
high pass effect on the layers on the side of the film produce the decrease in SNR through
an increase in the noise power.

These measures give only an indication of the performance from a theoretical point of
view. Tn practice, the object is very structured and the effects of noise due to other
layers cannot be calculated statistically.

Implementation of tomographic filters

Tomographic filters can be implemented optically or digitally. The use of
two-dimensional digital filters was preferred in this research because of their advantages,
such as flexibility, accuracy and speed. Moreover, with digital radiography the realization
of tomographic filtering is simplified.

From (5), the transfer function of the tomographic filter is the inverse of the transfer
function for the layer of interest. Since the gain of an ideal inverse filter can become
very high, it is necessary to provide some guards. Several filter structures have been

compared in the literature [9]. 1In this work a simple technique was used which provides a
means for hard--limiting the magnitude response of the inverse filter and cutting off the
high frequencies dominated by noise [61, [10]. Two types of experiments were performed.

Computer simulations using a computer simulation of the conventional radiology process, and
experiments with actual radiographs of a fanthom chest.

Figure 3 shows the results of one simulation dealing with a two-dimensional object so
that the effect of tomographic filtering at different depths could be observed.
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(a) (b) (e)

(d) (e) ()

Figure 3. Examples of tomographic filtering results: (a) Simulated radiograph of a
square-like annulus located 600 mm from the focal spot and 400 mm from the film.
This image was processed with tomographic filters designed for layers at the
following distances from the film: (b) 600 mm, (e¢) 550 mm, (d) 450 mm,
(e) 400 mm, (f) 350 mm.

Figure 3 clearly shows the high pass effect when a filter designed for a layer is used
on another layer located closer to the film. The breakdown of unwanted structures is
dramatic, although in practical applications the added source of noise may hinder the view
of other layers. The parameters of the tomographic filter (e.g. magnitude hard limit and
cut-off frequency) can be chosen so that it has little effect on the image or the filter can
be made more aggressive, until the image becomes dominated by noise. This phenomenon has
some analogy to the inverse filtering problem if the inverse transfer function does not
match the ideal, but it has some distinect peculiarities. Tt is complicated by the fact that
there are many layers superimposed on the image, each affected by a different (overall)
transfer function.

In practical applications the radingraphic system can be characterized by a pin-hole
image of the X-ray source and the geometry of the set-up. These are used to determine the
transfer function of the desired plane of cut, as shown in the denominator of (5). More
examples, details of the design and realization of tomographic filters and computer program
listings can be found in [6].
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Conclusions

A TFP is a technique for recovering three-dimensional information from a single
radiograph. Theoretical comparisons of the performance of tomographic filters have been
carried out. A TFP is an improvement over conventional radiography but it cannot achieve
the thin cuts of standard tomography. The main advantage of a TFP is the lower radiation
dose to the patient because only one radiograph is used, from which more images can be

generated interactively. The main drawback of a TFP is the noise generated by the high-pass
frequency response effect on the layers between the plane of cut and the film. Tt has been

shown that the filter can be designed to have little effect on the radiograph, or if the
technique is pushed too far, the image becomes dominated by noise. This effect has some
analogy to the inverse filtering problem but has distinct peculiarities. With digital
radiography the implementation of tomographic filters is pgreatly facilitated. Tt is
recommended that clinical evaluations be developed to determine the usefulness of the
technique from a medical point of view and find specific diapgnostic applications.
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