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TWO-DIMENSIONAL DIGITAL FILTERING.
BASIC CONSIDERATIONS AND SUBROUTINES FOR IMPLEMENTATION*

W.Waung and A.N.Venctsanopoulos J.M. Costa -

? Yniversity of Toronto 3011 Northern Rescarch
Toronto, Ontario, Cuanada Ottawa,0Ontario,Canada

ABSTRACT

“This paper considers filtering of two-dimensional data. The
mithematics governing these filters are cutlined. Different
mathematical transforms useful in simplifying calculations and
techniques to simplify computation are discussed. A subrountine
(written in FORTRAN) to perform two-dimensional fast Fourier
transforms of a real-valued array is briefly explained. An
example of two-dimensional data processing is also given.

I. INTRODUCTION

During the past few decades, the rapid development of digi-
tal computers has made such devices available to the general
public. Advances in this field have also greatly increased the
capabilitics of such machines [17, especially in the arecas of
storage capacity and speed of computation. These improvements
have resulted in improvements in the retrieval of data in digital
form. However with data stored digitally, it becomes more con-
venient to perform data processing in a digital fashion. This
creates new problems, but at the same time offers degrees of
freedom not available before [2-4].

¥

In many cases, the data represent multidimensional informa-
tion. Examples of such include contour maps, two~dimensional
images, positlon versus time data in seismelogy etc. Of these
data sets, two-dimensional information is usually most easily
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understood and thus generally most useful. Data sets of three
or more dimensicns are harder to visualize.

Some of the applications of two dimensional data processing
include restoration of Images, cenchancement of images and pattern

recognition, whi
There are many other uses and examples [2] but those men-
tioned give a good indication of the importance and scope of
such processing.
This paper is divided into two major scction. The first
section deals with an introduction to digital filtering and the
mathematics invelved., Brief mention is made of number theoretic
transforms and discrete Pourier transforms. In the second, a
subroutine to implment two-dimensional fast Fourier transforms
1s presented and bricfly cxplained. Finally, an example of
usage of the mentioned subroutine is given. nu
apy
IT. DIGITAL FILTERING The
To:
As stated in the introduction, digital data processing is mi |
particularly useful due to the availability of inexpensive digital S
computers. Howcver the idea of processing data gives rise to
notions of complicated algorithms. Viewed in a different manner e
this processing becomes easy to understand. One. can usually
model the process in terms of a digital filter. Then the output
of such a filter is simply the processed vesult of the input to 12 1
the filter [7]. The problem is then converted from that of the in
design of algorithms, to that of the design of a filter which
will achieve the desired processing. Such a problem requires a
different solution for each particular situation and is not dis- £1
cussed in this paper. There are many available refercnces des~ Fat
cribing how to design digital filters for restoration, enhance- in
ment etc. [5-0].
The resulting filters can have either infinite (IIR) or
finite impulse response (FIR). However, 1IR filters possess
certain properties that complicate their implementation. One
problem 1s that of stability. Tt is generally, difficult to: wlhie

ensure bounded-input; bounded-output (BIBO) stability in multi-
dimensional TIR filters. Yet FIR filters are always stable in
the BIBO sense. (Sece Appendix A). This paper discusses FIR
filters only.

It is well known that the output of a filter is the convolu-
tion of the filter impulse response and the input sequence. In
the case of a finite input sequence, filtered by a FIR filter,
we have ’
pal
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y(n],nz): z ; x(m‘,mqjh(nj—m],ﬂq—m,)
1 o £ P
m, =0 m,=0
1 2
where x(n],nv) is the input sequence of length Mle, i.e.
x{n,,n = ¢ n, <0 or > M
( 1° 2) ‘11 OT Hl 1
n, <0 or n, B MQ

1
h(nl,nz) is the impulse response of length MM,
and y(ny,n,) is the output sequence of length NyNp
where Nj = Mj-1+M,
N,1 = M!']“"Mﬁ

2 2

Hoﬁcvcr, doing this convolution directly requires large
number of operations. For each output scquence of length Ny, Ny,
approximately N]2N22 multiplications and additions arc needed.
There are faster and more cfficient methods of achieving the same
result. These are usually accomplished by the use of some mathe-
matical transforms, so that a convolution can be replaced by,
simple multiplication.

I11. MATHEMATICAL TRANSFORMS

The alternative to dircct convolution is the use of mathe-
matical transforms. The solution may require fewer operations
in the transform domain, thus rendering it more practical.

Such an approach became practical when Cooly and Tudey
first introduced a fast algorithm for performing the discrete
Fourier transform and its inverse. A general DFT like transform
in two-dimensions is

1 N
Al—l Nz 1

- 2 )
X(k,,k,) = E } x{(n, ,n, o a (1)
2 by o 1772771 2
nl-O n., =0

4
&

where 0] 1s a primitive Njyth root of unity
ty is a primitive Nyth root of unity.

The inverse transform 1s

”1N1“1 “2i1 kg ok .
x(n,,n.) = (N,N) ¥ ) X(k,,k o N ¢ I
1’72 12 L L 175209 -
ky=0 k,=0

The expressions (1) and (2) can be shown to form a transform
pair.
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Note now that the transform of the output sequence is the

peoint by peoint multiplication of the transforms of the twe - nput
seguences. N
nlk1 n ok,
« v N PR
Y(kl,kz)— % % )(nl,nz)u c
1 2
A nlkl nzk2
=0 b 11 X(mlsma)h(ﬂ1~ml,n@,mj)u a
n nl iy m‘3 © - -
= R(kl,kz)H(Kl,k2) (3

Therefore the output sequence can be obtained from the in-
verse transferm of the point by point multiplication of the
tra}sforms of the input scquence. And

- -
1 K{ : N% : -n]kl -n k,
vin ,n,)=(N ,N) ) X(h Lk OH(k LR Do o,
R 172 PN 172 172 2
I\{(I k. =0
) (4)

By using fast transform slgorithms, l-dimensional transforms
can be obtained using approximately Nlog,N multiplications and
additions. Therefore the number of operitions required to im-
plement the convolution in the transform domain is approximately
3(NlogoN)+N. For N large, this is much smaller than the NZ
operations requirced for direct convolution. Cenvolution by
operations in the transform demain is usually preferred.

IV.  NUMBER THEORETIC TRANSEFORM (NTT)

In number theoretic transforms, all operations are done in
modular arithmetic. That is, additions and multiplications are
done modulo M (mod M) where M is an integer called the modulus.
The allowable numbers are the set of integers 0,1,2,...M-2,M-1.
This set is called a field or a ring. In modular arithmetic all
numbers must be members of the above finite set. This is accom-
plished by a residue reduction operation such that

((x)) = X - rM (5)

where T is an integer and 0 < {{x)) < M-1,

For a number in modular arithmetic to have multiplicative
inverse, the modulus M must be a prime number. Therefore, the
general NTT of a sequence of NyN, integers

1, n, =0,1,...,N

17 2 Moo

v - = 9 J
A(nl,nz), n1 0,1,2,..., N 1

where modulus M is another sequence of le’\',7 integers
—
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-1 N.-
Nl ! i\2 1 nlkl nqu
X(k,,k,) = ) } x(n,,n ja o “ (6)
1’2 & - 1’72771 2
n.=0 n,=0
1 2
J
where o, 1is relatively prime to M, and of order N (i.e.a hlE 1)

a7 is mutually prime to M, and of order N, 1

and N-1 and Nz'l (multiplicative inverses Ny and Nj respectively)
exist,

i—ai, is mutually prime to My for all i = 1,2

-

seeea, N1
yee..; N-1.

3

1,

(3]

105 s mutually prime to M, for all i

However, only NTT's with highly composite N; and N, can
support an efficient FFT-like algorithm [8-9]. it is then
necessary to find suitable aj,ar, M] and My for such transforms.
Unfertunately only a few classes of NTT's satisfy the above
requirements. Two of these are the Fermat number transforms
{(FNT) and the Mersenne number transforms (MNT). FNT's use a
Fermat number F¢ as a modulus M, that is

F=F =22" 4+ (7)

MNT's,on the other hand, use a modulus of a Mersenne number
M=M =2 -1 (8)
where P is a prime number.

Number theoretic transforms offer the advantages of integer
arithmetic. All operations and intermediate steps result in
integers which can be represented exactly in digital machines.
Thus all roundoff and truncation errors are limited te those
resulting from initial quantization of the input sequences.
However, this advantage is offset by the restrictions on size of
the modulus N and o. These difficulties make NTT's a subject..
suitable to individuals with advanced background in modular )
arithmetic and transforms. For those interested, the topir-is
discussed in [8-9]. e

V. DISCRETE FQURIER TRANSFORMS S
This discrete Fourier transform (DFT) is an extension of the
Fourier Transform. Following the general form of mathematical
transforms, we have
N1~1 Nz;l .
DFT(x(nl,n?)=X(K1,k2)= Z L x(nl,nz)exp(~3§— nlk
n,=0 n7=0 1

1)

.21
‘Xp(‘JﬁE‘“zkz) &)
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N 1 o~ } I\i 2 - 1
IDFT(X(kl,k7):x(nl,n7)=(NIN7)_1 ] Xk, ﬁ)LAp(1i—ﬂ k)
) - - k=0 k=0 1
70K,

\xp(J'—ﬂﬂ k )

1~

(10}
This transform assumes a periodicity such that
(nl+rN1,n2+QN2) = x(nl,nz) r, %= ... -1,0,1,2... (11}
The convolution property applies for DFT also such that
y(nl,nz) = IDFT{DFT(x(nl,nz))x SFT(h(nl,nz})} (12)

However to avoid erroneous results from the assumed periodi-
city, the DFT's should be performed with

'
Ny = My + My - 1 <
m; =M, + Mi -1 (13)
where x(n],n,) is a sequence of ]cnﬂth My x Mp
h(ny,np) is a FIR of length Ml x My
y(nl,nZJ is a sequence of length \l X N2

To be able to use the fast Fourier transform algorithm
developed by Cooley and Tukey [10-11}, N; and N, must be powers
of 2 (radix 2). This restriction is much easier to satisfy than
those on NTT's. Further work on these algorithms has also made
it possible to have a radix 4 iwplomentation. Thig method has
been also extended to radix 3 FFT algorithms [12} and other
extensions [13], which allow more flexibility in the choice of

transform size.
VI. SOFTWARE AVATLABLI

We shall now present the various subprograms that are
currently available at the University of Toronto's Computer <
Centre (UTCC). These are subroutines written mainly by J.Costi
a Ph.D. student in Elcctrical Engineering.

One often used two-dimensional FIFT subroutine is discussed
in some detail. This is the program FFTZR and it operates on
two dimensional data that is purely real. This type of data is
encountered most often in the real world therefore making thi
subroutine of special interest.

1. FFT2R

In general, a two-dimensional sequence of data is presented
by a set of complex numbers. Using the TFortran programming
Pl . . i

language, this would mean ZN“ storage locations are required to
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record an NxN matrix of points.  That is, each complex number
would have been stored as a number pair of real and imaginary

kl) parts of magnitude and argument. However, much of the data
collected in actual situations involve only real numbers. This

‘k2) means that only N? memory locations are required. In geperal,

| : the transform of such a set of real data, is a sct of complex

iy numbers, which requires NZ storage points. For an algorithm

that produces the transform in place, it would seem that storage

) requirement is not reduced even if the input vector is purely

1 ’ real. Further examination reveals that the transform of a two-
. dimensional real matrix is characterized by certain symmetry

properties. The two-dimensional transform is defined as

X(kl,kz) = E k x(nl,nz)c
e nI:O n2=0
where n, and n, are indices of the matrix with dimension N, and
| 3) : N7 respéetivel§ '
: i x(n,,n,} is the two-dimensional input sequence and A(kl,kﬂ)
is the two-dimensional transformed sequence. Now examine

a5 Fr
Faiy LaT
N.-1 N -1 “JELN =K ), - ise(N,-k,On
12 I BRIy i Ry,
XN -k ,N -k )= ) ) x(m,n)e ¢
L2 2 2o n =0 L2
. 172
s DIy * Ve
: re N i sl -
han N1 1 NQ 1 Jw—k]nl Jﬁ—kjnqi
de Tv RO 17 T2t
as = | ) ) x-(nl,n?)e e {
< n,=0 n_ =0 ST
1 2
f :
=X* (k. k) ;
where * indicates the complex conjugate of a number. The above
symmetry property, together with the assumed periodicity property.
megns that the transform of a NxM real sequence will vesult in ’
(=4 + 2) distinct numbers, four of which are real numbers, These
ta nufbers can therefore be stored in the same memory space used to
store NM real numbers. This observation is used in the subroutine
. FFT2R to conserve storage requirements. However, slightly more »
sed than MM storage locations were used to reduce the processing J !
complexity.
s The actual memory allocation technigques are hest cxplained
13 by way of an illustration. Suppose we wish to obtain the DFT of
a real two-dimensional sequence of data, a(x,y). That is we
want
ted A(x,y) = DFT{a, (x,¥)]. (14

The pionts a{x,y) are stored in a FORTRAN array as followsy
to
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X(I,0) 5 1 <1 <M, 1<J<N (15)

Therefore X(1,1) is the value of a (0,0) - the value at the
origin. To illustrate this M and N is chosen to equal 8, i.e.
M=N=8. Generalization to the other powers of 2 is simpie.

. M M J
The real function a(x,y), ~§~< X 5753 -z <y <
as shown in Figure 1. “ ‘

(400,00 + X(1,1} a{0,1) » X(1,2) a(0,2) + x(;,a)...a<o,—1)*x<1‘s§
a(l,0) » x(2,1) al{l,1) = X(2,2) all,2) » X(2,3)...2(1,-1)+%(2,8)
a(2,0) » X(3,1) a(2,1) + X(3,2) a(2,2) + R(3,3) .. .a(2,~1)yX03 )
a(3,0) + 2(4,1) a(3,1) + X(4,2) a(3,2) » X(6,3)...a(3,~1)+X(4,8)
a(h,0) + X(5,1) a(4 1) » %(5,2) a(4,2) + A5, .. .a(é, 1y4x(5,8)
a(-3,0)+ X(5,1) a(-3,1) = X(6,2) a(-3,2) + (6 ,3)...a(-3,~1)+X(6,8)

al-1,00" X(7,1) a(-2,1) * X(7,2) a(-2,2) + X(7,3)...80-2,~1)+x(7,8)

[2(-1,0)> X(&,1) a(-1,1)+ X(8,2) a(0,2) = 2(8,3) . a1, -1»X(8,8)|

Figure 1. Storege allocation of (8,8) data sequence
VII. EXAMPLE

In Figure 2 to 4 an example achieving two dimensional filter-
ing of a noisy input is presented. Below are a set of print-outs
showing pictorially the input sequence, filter LthdLTOT stic and
the filtered output

Auuaulues- ~EQE8} )nu’ (e» 8- |l
n»-sv{kcltte! 5te gercosImi
te

lpine‘!:x - cu-nu—:eu—ux-n-vxe

- -ODlﬁIi“l- [N
GuRil- < {RBE)
EFEOLIR]- ~xgRRL
ABRELTEARA T HESR
-8 JLnERRTITE =

-8R~ spte t3 as
.o BrApER anoe

28 1ms so1.-m
¢tsa=uaazu< ~BRFL~ css 68 qan

Figure 2
Input sequence

Figure 4
Filtered output

Figure 3 Filter characteristic
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VIII. CONCLUSIONS

This paper has dealt with digital filtering which is a very
powerful tool in data processing. The emphasis has heen placed
on two-dimensional data, as it is both useful and conceptually
easy to visualize. Details on how such filtering can be achieved
by software was presented, with special discussion on a two-
dimensional FFT program available at UTCC. 1t is hoped that the
reader will find out more about these subroutines and make use
of them. The usefulness and power of digital filtering can only
be fully appreciated by actual experience with such methods.

APPENDTX A - BIBO stability of two-dimensional FIR filters

A two-dimensional finite impulse response (FIR) filter is

defined by an impulse response sequence h{m,n) such that

%(m,n) =0 form< 0 orm> Nl orn < 0 orn >N, {(a.1)
gives an inputhquence x(m,n},the output of the filter is
‘] N2
y(k,2) =} } h(m,n) x(k-m, %2-n) (2.2)
m=0 n=0 ;
The magnitude of the output sequence is therefore
N, N <
1 2 S
ly(k,l)l = | E Z him,n) x(k-m,%-n)|
m=0 n=0
N \
1
< Yo ) IhOmm) | [ x(k-m, 2-n) | (a.3)
m=0 n=0

1f the input sequence is bounded such that
}x(m,n)l < B for all m,n (a.4)

then it follows that
N1 Ny
ly,2)] <B 7 7 |hmn)| < (a.5)
m=0 n=0

Therefore, for a bounded input, the output of a two-dimen-
sional FIR filter is always bounded. Thus bounded-input-bounded-
output (BIBO) stability is guaranteed for all FIR filters.

Ed
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