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THE PROLLEM OF ROUND OFF NOISE IN DIGITAL FILTERS

0, ABSTRACT

Digital filters can be realized using fixed-point,
floating-point, or block-floating-point arithmetic. In
this paper we consider the round off noise problem with
regard to the mode of arithmetic used to implement the
digital filter. We present structures for fixed-point,
floating-point and block-floating-point arithmetic,
compare these techniques 6ﬁ the basis of their output
noise-to—siénal ratio, and plot curves representing this
comparison.

1. INTRODUCTION

In spite oﬁ the advantages offered by digital
networks, there is:. an inherent accuracy .problem associated
with the implemenﬁétion and operationvof digital filters,
since each number ié_répresented by a finite number of
bits and the arithﬁétic operations must Le carried out with
" an accuracy limited by this finite word length, The

specific sources of quantization error are as follows:

1) Coefficient truncation -caused by the fact that
the multiplying constants must be quant;zed to soie finite
number of bits [l] , [2] , [3] .

: 2) Input quantization -caused by the quantization of
‘the input signal into a set of discrete levels [4],[5],[6].
3) Round off noise -caused by the accumulation of
errors committed at each arithmetic operation because
these operations are carried out with only finite bit

accuracy.

In this paper we consider only the third error source

(that is, the round off noise), and present an approach to



the analysis of this problem from the point of view of the
mode of arithmetic employed, that is, fixed~point [7],[8],
[9],[10],[21], [22],[13], floating-point [10], [14], [15],
[10], or block-floating-point [17].

All the contents of this paper have been covered in
the given references, The purpose of this paper is to give
a unified presentation of the effect of the mode of

arithimetic on the output round off noise,

In Secfion 2 we consider the round off noise problem
and the variables in the filter implementation which
determine theilevel and character of the round off noise,
A structure for fixed-point, floating-point and block-
floatlnb-p01nt is presented in Section 3 In Section 4 we
compare tnese modes of arithmetic on the basis of their
output n01se-to-signal ratio, and present curves reppe-

senting this comparison.

2, LWHE PROBLEM CF ROUND OFF NOISE IN DIGITAL FILTERS

Round off hoiéé as well as input quantization may be
considered as noise introducing processes, very similar in
nature since both involve quantization of the data, but
the former differs in two respects. 1) The data to be
quantized is already digital in form, and 2) the rounding
or truncation of the data takes place at various points

within the filter, not just at its input.

The content and complexity of any analysis of round
off noise are determined to a large extent Ly the assumed
correlation between round off errors., The analyses
appearing in the literature concerning round off noise in
digital filters usually employ the simplifying and often
reasonable assumption of uncorrelated round off errors

from sample to sample and from one error source (multi-



plier or other rounding point) to another [7],[8],[15].
The advantage of assuming uncorrelated errors from one
sample to another is that the noise injected into the
filter by each rounding operation is then "white" [4];
while the advantage of assuming uncorrelated error sources
is that the output noise power spectrum may then be
computed as simply the superposition of the (filtered)
noise spectra due to the separate error sources [7] [ll].
As long as the assumptlon of uncorrelated errors can be
made, the results of an analy31s of round off noise are
applicable to the case of truncation as well as rounding,
with the errdr variance for truncation being four times
that for rounding. However, as the input signals become
less "random", the uncorrelated-error assumption tends to
break cown for truncation more readily‘thén'for rouhding.
In the casé of correlated-noise (for‘instance, Qhen the
signal is constant) we enqounter‘the deadband effect and .
can have limit cycles, [ ] [18] [19] [20]. Nevertheless
round off limit cycles are negligible with floating-point
arithmetic [lh] ' '

There are three variables in the filter implementa-
tion which determine the level and character of the round

off noise for a given input signal:

1) The number of bits used tq-reprééent the data
within the filter. |

2) The mode of arithmetic employed.

3) The circuit configuration of the digital filter.

The number of bits in the data may be thought of as
determining either the quantization step size or the
dynamic range of the filter (that is, a maximum value or
set of maximum values for the magnitudes of these data).
If we choose the latter interpretation we will have the
same step size for all filters, and therefore, the number
of data bits will not affect the level of the round off

noise directly, but rather it will l1imit the maxiumm



allowable signal level and hence the realizable signal—to-
-noise ratio. Data within the filter must, of course, be
properly "scaled" if the maximum signal-to-noise ratio is
to be waintained without exceeding the dynamic range

limitations.

There are three modes of arithmetic which can be
employed in the implemenﬁation of a digital filter: fixed-
-point, floating-point and block-floating-point., Since the
analysis of round off noise in this paper is from this
point of view we study this topic in detail in the two

following sections.

The third variable in the implementation of a digital
filter, that of circuit configuration, [9] [12] [13] [16]
is the prin01pal factor determining the character
(spectrum) of the output round off n01se and, along with
mode of the arithmetic, ultimately determlnes the number
of data digits required to satlsiy the performance
specifications, There are a multitude of equivalent
circuit configurations for any given linear discrete
filter (whose transfer function is expressible as a
rational fractiph in»z); but in the implementation of the
corresponding digitél filter, these configurations are no
longer equivalent, in'general, because of thie effects of
coefficient truncation and round off noise. Assuming that
the coefficients for the configurations under considera-
tion have been (or can be) quantized safisfactorily, the
choice between these conflguratlons is then determined by

the level and character of their output round off noise.

3. THE MODES OF ARITHMETIC

There are three modes of arithmetic which can be
employed in the implementation of a digital filter: fixed

-point, floating-point, and block-floating-point. Their



structures follow.

In fixed-point arithmetic each number x must satisfy
certain inequalities such as -1<x<1l. In general each
nuiber will be allowed a fixed number t of bits for its
representation, and we shall say that the digital filter
works with words of t bits [22].

In floating-point arithmetic each number x is repre-
sented by its sign and an ordered pair m and e such that
x = (sgn) m 26,\where m and e each have a fixed number of
bits. ‘'he number e, called;the exponent, index, or charac-
teristic, is an integer, and the number m, called the
mantissa or the fractional part, is between % and 1.
Usually zero is also permitted for m. It is assumed that
enoupgh bits are allowed for the exponent so that no

computed number will lie outside the permissableé range.,

When two floating-point macbine numbers x and y each
with a t-bit mantissa are multiplied, their exact ?roduct
in floating-point representation has in general a frac-
tional part of 2t or (2t-1) bits. To represent the product
in the computer, only the most significant t bits of the
mantissa can be-retained. This can usually be achieved
either by truncation Qf by rounding. Similarly truncation
or rounding is needed in general before or after the

addition of two floating-point numbers.

In block-floating-point arithmetic the input and
filter.states (i.e., the outputs of the 'delay registers)
are Jjointly normalized before the multiplication and adds
are performed using fixed-point arithmetic. The scale
factor obtained during the normalization is then applied
to tire final output to produce a fixed-point result. To
illustrate, consider a first order filter described by the

difference equation

- , 1
v, o= X, * Ky, . (1)

For convenience we will treat all numbers as fixed-point



fractions. To perform the computation in a block-floating-

-point manner, we define

An = 1 -

1P [max{' xn‘ , |Yn-1|} ]
where IP[M] is used to denote the integer power of two
such that M<IP[M]<2M, that is, with M written as M=m 2°

with m between % and 1, IP[MJ::ZG. For M a fraction, 2° is

(2)

less than or equal to unity so that An is greater than or

equal to unity. Thus Aﬁ fepfesents the power-of-two

Ii

scaling which will joinfly.normalize X and yn 1 Thus
with block-floating-point we can compute yn as
N £ KA
In = A [ n *n n yn-l] ' (3)

where the multiplications and addition in (3) are carried

out in a fixed-point manner.

Because of. the recursive nature of the computétion

for a digital filter, it is advantageous to modify (3) as

9, = A, x, Y KA W, ' (&)
with
Yin T %n-1 Yn-1
_ L
Yn = & n
n
and

An = An/An-l'

The difference between (3) and (4) is meant to imply that
thhe number An’@x rather than Y is stored in the delay
register of the filter. Because of (2), Anyh is always
more accurate (or as accurate) as ¥, since multiplication

by A.n corresponds to a left shift of the register.

A disadvantage with (4) is that Yn-1 nmust be

-6~



available to compute An, and An must then be obtained from
An and An-l' An alternative is represented by the set of

equations

% Anﬁn*Kﬂnwln . (52)

with
%n = A1 *n ' (50)
and

et
A, J:p[max{lxn| : l“’lnl}]

In this case, we first scale X, by A.n

. (5¢)

1 to form ﬁn and
then determine the incremental scaling using (5¢). As in
(4), the scaled value 9 is stored in the delay register
and the output value Ya is determined from ?n' If we
consider thie general case of an Nth order filter of the

form
Yn © *n + Kl Yn-1 * KZ Yn-2 Pooes d KN Yn-nN

then the block—floéﬁing-point realization corresponding

to (5) and represented in the direct form is depicted in

I'ig. 1. For the general case,

1
I_Pl:ma.xﬂﬁnl ’!wlnl"WEn" cee

£

(6)

YN l}]

A = L (7)

ST T el ]

An—l An’

fl

As an additional consideration, we note that because of
the block normalization, thexre is thie possibility of over-
-flow in the addition, which cannot be avoided Ly an atte-

nuation of the input. This possibility of overflow can be



avoided by decreasing the normalitation constant An by a

fixed awmount. Thus we umodify (6) and (7) as

A, = L (61)

z-IP[max{IinI’|W1n|’|w2n|’ Tt ’lenl}]

A, = - (7')

rIP[max{l xnl ,'yn_lltlyn_zl’ L ’Iyl’l-N|}]

where r is a constant that may be changed depending on the

filter to be implemented. In a first order filter, for

examnple, r need never be greater than two,.

kn f*h ’ .: e )
-1
. ! ) ’ z
: 'win = An-l yn--l
_ Kl "’An

“ -1
z
Vion = Ano1 Yneo
KZ
— t
. L ]
» .‘
o. [
-1
z

Nn = #n-1 Ynon

e
i

ffigure 1. Network for block-floating-point realization of

an Nth order filterxr.

n “u-1 43 (;} o l{fn Yn



4. A CunPARISON OF KOUND OFF NOISE IN FIXED-POINT,FLOATING
=POLNT, AND BLUCK-FLOATING-POINT RICALIZATIONS

There are basic differences concerning fixed-point
and floating-point error estimation problems. Some of them
steis from the fact that the modulus of every individual
arithiietic error in the fixed-point mode is bounded by a
constant determined by the machine, whereas the maximum
modulus of the.error in forming, for example, the floating
-point sum of .two floating-point numbers is proportional

to the magnitude of the true sum.

Floating-point arithmetic has a larger dynamic range
than fixed-point, but the latter is more accurate when the
full register length can be utilized. Lecause of the
liuwited dynamic range of fixed;ppint arithmetic, for high
-gain filters, the input sign&l must be attenuated to
prevent overflow in the output. Thus, for_sufficiently
high-gain, floating-point arithmetiC;leédé to lower noise
~to-signal ratio than fixed-point. On the other hand,
fléating-point arithmetic implies a more complex hardware

“structure than fixed-point arithmetic.
. -
Block-floating-point is an alternative realization

that provides a simplified form of automatic scaling of
the filter data, and it lies soumewhere between those of

fixed-point and of floating-point.

In both the fixed-point and block-floating-point
cases, the dynamic range'for"ﬁhe output is constrained by
tiie register length. Consequently, as the filter gain |
increases, the input must be scaled down to preventAthe
output from overflowing the fegister length, If hn denotes
the impulse response of the filter, then the output is

given by



and it is bounded by

max(‘ynl) = max(‘xn‘) ;g: |hj" (8)

For a first order filter with impulse response hn::Kn,

this bound is
max('yn‘) = max(‘xn{) (1/1-K). (9)

Interpreting the fixed-point numbers X, and Yy, as
signed fractions, we require for no overflows that |ynlf§l,

restricting x  to the range
~-(1-K) <x < (1-x). (10)

Next we present statistical analyses of the effects
of round off noise in first order filters implemented in.
fixed-point, floating-point, and block-floatingapoint. In
each case we compute the output noise-to-signal ratio
using experimental results given in the referenceS'[lU],
[17], and curves representing the output noise-to-signal
ratio as a function of pole position are presented.,
Similar analyses for second order filters can be found in

the references..'
4.1. Fixed-Point Filter
For a first order filter (Fig, 2) of the form

y =K Yol + X

. (11)

n

with xn white and uniformly distributed between the limits
in (10), the variance of the input signal is

2 u(1-10%  (1-x)?
6; - 12 - 3

and the variance of the output signal is

2
_6;2 N T N 6;2 g L2=107

y b'e 3

hence

=10~



z-l

Figure 2. Noise model fon‘first order filter.

52 (1-x)%
y :

3(1 - X*)

Since the noise 8n is injected at the input of fhe
filter (Fig. 2), we use (11) and get - R

2 2 2 2
O 1{02462

where

2 _ E ) zzft}z z—dt‘

G

[
0
I

12 12 12
Hence the variance of the output error is
-2t

= . . 13
¢ 12(1 - X°) (13)

2 2

We note that the output noise is independent of the output
signal variance. Dividing (13) and (12) we find the output
noise-to-signal ratio for a first order filter implemented

with fixed~point arithuietic as

6;2 2—2t L
2 - 2 (14)
6; L(1 - K)

-11-



4,2. Floating-Point Filter

For a first order filter of the form

n = K yn-l ¥ Xn (15)
in floating-point arithmetic the computed output W is

w_ = [K w . (14+E,) + xn] (1+8) (16)

Since the errors Eﬁ and 5; arise from round off due
to the floating-point multiply and add, respectively, we
will assume that they are random variables and are
independent ‘of X, and Yne Furthermore we shall assume that
the errors are independent from sample to sample (white).
In Appendix 1 is shown that in the case of rounding, these

errors are bounded by

27" 5. EnvlSn‘S 2”*

The error at the output at the n B sample is the

difference between the actual output and the ideal output.
en =V - ¥y A o - (17)

Substracting‘(;S)"ffom (16) and neglecting second
order terms in e, E, and 5, we obtain a difference

equation for the error e, as

e ~Ke =Ky, , (E+8,) +x, 4, =nu, (18)

With the assumptions above, u, islﬁhite noise with
variance dictated by the statistics of x_ and the
variances 6;2 and 6‘52 of Gn and ‘Sn' The variance 6;2 of the
output noise e, is obtained easily from the wvariance 6;2 of

u as
Il

2 2 =2 2 1
R S )

1-K

where hn = K* is the filter impulse response.

-]12-
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For example, if we assume that X is stationary white

noise of variance 6:2, and using (15), (18), and (19), we
obtain

6\2=G;2+K2 6‘;26‘2=632+K2 6;26\2 (20)
e (1 -K*)* x (1 - k?) y

Since both fand § are due to quantizing, it is
reasonable to assume that they are uniformly distributed
t, Z_t.),. with variances 6;2 = 6&2 = 2-2t/3
[15],[16]. Actual measurelients [lO] of the noise due to =

multiply and an add verified that the variances

Ge~ = 65 = (0.23) (277%) (a1

in the range (-2

would better represent these noise sources. Using (20) and

(1), we can compute the output noise-to-signal ratio as

2

[

2
Oy

4,3, Block-Floafinngoint.Filters

-21:) 14 1{2‘

(22)
1-K°

= (0.23) (2

In‘evaluating‘thé‘performénce of the block-floating-
-point realization inlfhe presence of round off noise [17],
we will restrict attention to the implementation of (5)
and Fig. 1 for the first order case. We will assume that
no round off occurs in the computation of 2n from X, and
the subsequent multiplication by An. Since An-l and
Anélﬂn are always nonnegative powers of two, that is,
thiey always correspond to a positive scaling, the above
assumption corresponds to allowing more bits in the ~
representation of the intermediate variable ﬁn. This is '

reasonable if we take the attitude that it is primarily
in the variables used in the arithmetic computations that

the register length is important.

For the first order case, round off noise is




introduced in the multiplication of Yin by An’ the
multiplication by K, and the final multiplication by
l/An. The effects of multiplier round off will be modeled
by representing the round off by additive white noise
sources, We consider, for convenience, the fixed-point
numbers in the registers to represent signed fractions,
with tlie register length excluding sign denoted by t bits.
Each of the round off noise generators is assumed to be
white, mutually independent and independent of the input,
and to have a variance'GEzléqual to (1/12)2-2t. The
network for the first drdér filter including the noise
sources représenting round off error is presented in Fig.
3(A). In Fig. 3(B) an equivalent representation is shown,
where the noise sources are at the filter input. If we
consider the input to be a stationary faﬁdom,signal; thén
tihe noise source 5n will be white stationary rahddm noise

with variance

632 = .@2 (1+x2) ¢? | . | (23)

. o . ‘ 2 .
where C2 denotes the expected value of (l/An) . Letting e,

denote the noise in the filter output due to the noise 8n'

the variance of the output noise e, will be

6*2

i}

® 2 2 1+K° 2
6 > %4 (655" =0 (1405 C

n=0 . l-=-K
-2t 2 . ’
-2 14—1—*—1—{3 c?l . (24)
12 1-K '

This result is derived by observing that in Fig. 3(B) the
transmission froii the noise source é; to the output is
that of a first order filter with unit sauple response hn
given by h = K®, an experimental verification of (24) is
given in ref. [17]. We note that the expression (24) for
the noise has a term independent of the signal and a term

2
which depends on the signal through the factor C .

-14-



Dividing (24) by the variance of the output signal
(12) we find the noise-to-signal ratio

2 e
0, 272t 1 % 14+45° 2 .
= 4 C (25)

6;2~ ol (1-K)% (1+K)°

x_ - An-l. b, q_’? : "Y’ln-!-l =%n n ' v,

(A) \I;n -
€
1/A,

X = (i7 s Yn

z—l

14,

K

(B)

Figure 3. (A) Noise model for block-floating-point first

order filter.

{B) Equivalent noise model.

-15-



L.,4, Comparison of Noise;to-Signai Ratios

In Fig. 4, (14),(22), and (25) are compared [17].
The noise-to~signal ratios for first order filters are
plotted in bits so that the difference between two of the
curves reflects the.number of bits that the mantissas
should differ by to achieve the saue noise-to-signal
ratio. ‘the difference between floating-point and block-
-floating-point is approximately constant (one bit) as the
filter gain (or the proximity of the poles to the unit
circle) increases. In contrast, tlie fixed-point nbise-to
-signal ratio increases at a faster rate than floating-
-point or block-floating-point, and for low gain is better

and for high gain is worse than block-floating-point,

In evaiuating the comparison betweén'fixed-poinf,
floating-point, and block-floating-point filter -
realizations, it is important to noté that Fig. 4 is 5aéed
only on the mantissa length and do not reflect the
additional bits needed to represent the characteristic
in either fioating—point.or'block-floating-point

arithmetic.

An additiohal‘cénsideratibn which is not reflected in
these curves is that in both fixed-point and block-
~-floating-point the ﬁoise-to-signal ratio is computed on
the assumption that tie inpuf signal is as large as
possible consistent with the requirement that the output
it within the register length., If the input signal is in
fact smaller than permitted, then the noise-to-signal
ratio for the fixed-point case will be proportionately
higher. For block=-floating-point, as the input signal
decreases, C2 decreases, thus reducing the output noise,
From (24) we observe that as the input signal decreases
the output noise variance asymtotically approaches 622.
For the case of high gain filters, (14),(22), and (25) can
be approximated by asymptotic expressions which place in

evidence the relationship between them [17].

-16-



FIXED-POINT;

2 .5 .7 .9 | .99 0.999

Figure 4, Comparison of noise-to-signal ratios for first
order filter using fixed-point, floating-point,

and block-floating-point arithmetic,

=m0 0= @ =@ o= 0 = 0 =,

5. SUMMARY

The variance of the round off noise as it appears in
the output has been calculated for a first order filter
implemented with fixed-point, floating-point, and block-
-floating-point rarithmetic. In the fixed—point case the
output noise is independent of the outpﬁt signal variance,
and in the floating-point case the output noise is propor-
tional to the output signal variance. The expression for
block-floating-point noise has a term independent of the

signal and a term which depends on the signal.

In the case of first order iilter with impulse
response hn = K and the input si;mal constrained in the
range -(l-X) <x < (1-X), the noise-to-signal ratios

have been computed and plotted in bits as a function of

-17-



pole position., The difference between floating-point and
block-floating-point is approximately constant as the
filter gain increases. In contrast, the fixed-point noise-
-to-signal ratio increases at a faster rate than floating-
'-point,or block-floating-point, and for low gain is better

and for high gain is worse than block-floating-point,

6. APPENDIX - .

In this appendix we derive bounds for the round off

errors due to the floating-point multiply and add.

Consider the number x represented in‘floating-pdint

e . .
form, x = (sgn) m 2°, The exponent is given by

e = [log2 x]

where the brackets [-] denote the smallest integer
exceeding the quantity inside the brackets. The mantissa

is therefore
m = x/2e

For convenience x is taken to be positive. If only t bits

is allowed to the mantissa, m must be sd-truncated or

)

rounded, thus commiting an error ‘e given by

e = x - my 2% = 2° (m-m.) = 2% et (26)

where m, is the truncated or the rounded version of m. Ve

denote e' the difference m - my . It is clear that e' is

bounded by

-t-1

—2mtl v -2 for rounding, and

-2-t —e' =0 for truncation,

Therefore e is bounded by

-18-



. N - : . .
Figure 5, 2 as -a function of x.

~2® 2-t-1 g‘e."S'ze 2°t-1 " por rounding, and

~28 2t <e g 0 for truncation.

The function 2% is a piecewise constant function of x
and is sketched in Fig. 5. It is seen that

e

x < 2 < 2x, or

1 < (2%/x) < 2.

The above characterization of e and e' is not easy

to use in analysis because of the nonlinear dependence of
2° on x. Equation (26) may be rewritten as
e = x e"

with

e" ='On-1nt) (2°/x) (27)

-19-
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It is clear from (27) that

~2"t < e" < 2~ for rounding, and

_p-til < e" <O for truncation.

Using the notation fl(.+) to denote the machine number
resulting from performing the arithmetic operation
specified by the parenthésis, for multiplication and

addition we have:
fl(xy) = xy (L+8)
Tl(x+y) = (x+y) (1+€)

where if the two fldating—point numbers x and y have t-bit

‘mantissa £ and 5 are bounded by

—27t < £, ‘S < 2"t for rounding, and
_pmtL <€ §<o for truncation.
= ¢ = 9 = 90 = 9 = 0 =
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